• Title/Summary/Keyword: 러핑 각도

Search Result 4, Processing Time 0.02 seconds

Evaluation of Structural Stability of JIB Crane for a Feed Vessel According to the Luffing Angle (러핑각도에 따른 선박용 지브크레인의 구조 안정성 평가)

  • Lee, M.J.;Han, D.S.;Han, G.J.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.24-28
    • /
    • 2008
  • It expects demand of ships which equipped with JIB crane growth to continue. However, demand of JIB crane is increased, domestic shipment company imitated the design of Europe and Japan. And we need to develop the functional system of the JIB crane and modernize it. We need to find the optimum luffing angle for saving energy when JIB crane works. This study analyzed buckling load of JIB and reaction force of support point and stress of JIB according to the luffing angle through finite element analysis when JIB crane loads 40 ton weight. And this study considered the safety factor 1.8 of material. Every design condition was KS A1627 standard. This study used ANSYS 10.0.

  • PDF

Compensation of Relation Formula between Luffing Wire Tension and Overturning Moment in a Crawler Crane Considering the Deflection of Boom (크롤러 크레인에서 붐의 처짐을 고려한 러핑와이어 장력과 전도모멘트 사이의 관계식 보정)

  • Jang, Hyo-Pil;Han, Dong-Seop
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.44-49
    • /
    • 2011
  • The crawler crane, which consists of a lattice boom, a driving system, and movable vehicle, is widely used in a construction site. It needs to be installed an overload limiter to prevent the overturning accident and the fracture of structure. This research is undertaken to provide the relation formula for designing the overload limiter as follows: First the relation formulas between the wire-rope tension and the hoisting load or the overturning ratio according to the luffing angle and length of a lattice boom are established. Secondly the derived formulas are corrected by using the compensated angle considering the deflection of boom through the finite element analysis. The stiffness analysis is carried out for 30-kinds of models as a combination of 6-kinds of luffing angle and 5-kinds of length of boom. Finally the shape design of a stick type load cell, which is the device to measure the wire-rope tension, is performed. 5-kinds of notch radius and 5-kinds of center hole radius are adopted as the design parameter for the strength analysis of the load cell.

Weight Reduction Design for a JIB of Deck Crane for Shipment (선박용 갑판크레인의 지브의 경량화설계)

  • Han, Dong-Seop;Lee, Moon-Jae;Han, Geun-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.396-400
    • /
    • 2009
  • The demand of JIB crane to handle a container or a bulk in a vessel is increasingly because of the growth of the scale of trade through the sea. This deck crane such as JIB crane is required the weight reduction design because it is installed in the deck of a vessel due to the environment regulation. In this study first we carry out the structural analysis of JIB with respect to the luffing angle of it to calculate the maximum equivalent stress of JIB, and next the optimum design for the weight reduction design of JIB. The thickness in a cross section of JIB is adopted as the design variable, the weight of JIB as the objective function, and the von mises stress as the constraint condition for the optimum design of JIB using the ANSYS 10.0.