• Title/Summary/Keyword: 러프 엔트로피

Search Result 14, Processing Time 0.026 seconds

Rough Entropy-based Knowledge Reduction using Rough Set Theory (러프집합 이론을 이용한 러프 엔트로피 기반 지식감축)

  • Park, In-Kyoo
    • Journal of Digital Convergence
    • /
    • v.12 no.6
    • /
    • pp.223-229
    • /
    • 2014
  • In an attempt to retrieve useful information for an efficient decision in the large knowledge system, it is generally necessary and important for a refined feature selection. Rough set has difficulty in generating optimal reducts and classifying boundary objects. In this paper, we propose quick reduction algorithm generating optimal features by rough entropy analysis for condition and decision attributes to improve these restrictions. We define a new conditional information entropy for efficient feature extraction and describe procedure of feature selection to classify the significance of features. Through the simulation of 5 datasets from UCI storage, we compare our feature selection approach based on rough set theory with the other selection theories. As the result, our modeling method is more efficient than the previous theories in classification accuracy for feature selection.

The Study on Information-Theoretic Measures of Incomplete Information based on Rough Sets (러프 집합에 기반한 불완전 정보의 정보 이론적 척도에 관한 연구)

  • 김국보;정구범;박경옥
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.5
    • /
    • pp.550-556
    • /
    • 2000
  • This paper comes to derive optimal decision rule from incomplete information using the concept of indiscernibility relation and approximation space in Rough set. As there may be some errors in case that processing information contains multiple or missing data, the method of removing or minimizing these data is required. Entropy which is used to measure uncertainty or quantity in information processing field is utilized to remove the incomplete information of rough relation database. But this paper does not always deal with the information system which may be contained incomplete information. This paper is proposed object relation entropy and attribute relation entropy using Rough set as information theoretical measures in order to remove the incomplete information which may contain condition attribute and decision attribute of information system.

  • PDF

The Generation of Control Rules for Data Mining (데이터 마이닝을 위한 제어규칙의 생성)

  • Park, In-Kyoo
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.343-349
    • /
    • 2013
  • Rough set theory comes to derive optimal rules through the effective selection of features from the redundancy of lots of information in data mining using the concept of equivalence relation and approximation space in rough set. The reduction of attributes is one of the most important parts in its applications of rough set. This paper purports to define a information-theoretic measure for determining the most important attribute within the association of attributes using rough entropy. The proposed method generates the effective reduct set and formulates the core of the attribute set through the elimination of the redundant attributes. Subsequently, the control rules are generated with a subset of feature which retain the accuracy of the original features through the reduction.

Clustering Algorithm for Data Mining using Posterior Probability-based Information Entropy (데이터마이닝을 위한 사후확률 정보엔트로피 기반 군집화알고리즘)

  • Park, In-Kyoo
    • Journal of Digital Convergence
    • /
    • v.12 no.12
    • /
    • pp.293-301
    • /
    • 2014
  • In this paper, we propose a new measure based on the confidence of Bayesian posterior probability so as to reduce unimportant information in the clustering process. Because the performance of clustering is up to selecting the important degree of attributes within the databases, the concept of information entropy is added to posterior probability for attributes discernibility. Hence, The same value of attributes in the confidence of the proposed measure is considerably much less due to the natural logarithm. Therefore posterior probability-based clustering algorithm selects the minimum of attribute reducts and improves the efficiency of clustering. Analysis of the validation of the proposed algorithms compared with others shows their discernibility as well as ability of clustering to handle uncertainty with ACME categorical data.

Creation of Approximate Rules based on Posterior Probability (사후확률에 기반한 근사 규칙의 생성)

  • Park, In-Kyu;Choi, Gyoo-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.5
    • /
    • pp.69-74
    • /
    • 2015
  • In this paper the patterns of information system is reduced so that control rules can guarantee fast response of queries in database. Generally an information system includes many kinds of necessary and unnecessary attribute. In particular, inconsistent information system is less likely to acquire the accuracy of response. Hence we are interested in the simple and understandable rules that can represent useful patterns by means of rough entropy and Bayesian posterior probability. We propose an algorithm which can reduce control rules to a minimum without inadequate patterns such that the implication between condition attributes and decision attributes is measured through the framework of rough entropy. Subsequently the validation of the proposed algorithm is showed through test information system of new employees appointment.

Uncertainty Improvement of Incomplete Decision System using Bayesian Conditional Information Entropy (베이지언 정보엔트로피에 의한 불완전 의사결정 시스템의 불확실성 향상)

  • Choi, Gyoo-Seok;Park, In-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.47-54
    • /
    • 2014
  • Based on the indiscernible relation of rough set, the inevitability of superposition and inconsistency of data makes the reduction of attributes very important in information system. Rough set has difficulty in the difference of attribute reduction between consistent and inconsistent information system. In this paper, we propose the new uncertainty measure and attribute reduction algorithm by Bayesian posterior probability for correlation analysis between condition and decision attributes. We compare the proposed method and the conditional information entropy to address the uncertainty of inconsistent information system. As the result, our method has more accuracy than conditional information entropy in dealing with uncertainty via mutual information of condition and decision attributes of information system.

System Modeling based on Genetic Algorithms for Image Restoration : Rough-Fuzzy Entropy (영상복원을 위한 유전자기반 시스템 모델링 : 러프-퍼지엔트로피)

  • 박인규;황상문;진달복
    • Science of Emotion and Sensibility
    • /
    • v.1 no.2
    • /
    • pp.93-103
    • /
    • 1998
  • 효율적이고 체계적인 퍼지제어를 위해 조작자의 제어동작을 모델링하거나 공정을 모델링하는 기법이 필요하고, 또한 퍼지 추론시에 조건부의 기여도(contribution factor)의 결정과 동작부의 제어량의 결정이 추론의 결과에 중요하다. 본 논문에서는 추론시 조건부의 기여도와 동작부의 세어량이 퍼지 엔트로피의 개념하에서 수행되는 적응 퍼지 추론시스템을 제시한다. 제시된 시스템은 전방향 신경회로망의 토대위에서 구현되며 주건부의 기여도가 퍼지 엔트로피에 의하여 구해지고, 동작부의 제어량은 확장된 퍼지 엔트로피에 의하여 구해진다. 이를 위한 학습 알고리즘으로는 역전파 알고리즘을 이용하여 조건부의 파라미터의 동정을 하고 동작부 파라미터의 동정에는 국부해에 보다 강인한 유전자 알고리즘을 이용하다. 이러한 모델링 기법을 임펄스 잡음과 가우시안 잡음이 첨가된 영상에 적용하여 본 결과, 영상복원시에 발생되는 여러 가지의 경우에 대한 적응성이 보다 양호하게 유지되었고, 전체영상의 20%의 데이터만으로도 객관적 화질에 있어서 기존의 추론 방법에 비해 향상을 보였다.

  • PDF

Uncertainty Measurement of Incomplete Information System based on Conditional Information Entropy (조건부 정보엔트로피에 의한 불완전 정보시스템의 불확실성 측정)

  • Park, Inkyoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.107-113
    • /
    • 2014
  • The derivation of optimal information from decision table is based on the concept of indiscernibility relation and approximation space in rough set. Because decision table is more likely to be susceptible to the superposition or inconsistency in decision table, the reduction of attributes is a important concept in knowledge representation. While complete subsets of the attribute's domain is considered in algebraic definition, incomplete subsets of the attribute's domain is considered in information-theoretic definition. Therefore there is a marked difference between algebraic and information-theoretic definition. This paper proposes a conditional entropy using rough set as information theoretical measures in order to deduct the optimal information which may contain condition attributes and decision attribute of information system and shows its effectiveness.

Diagnosis by Rough Set and Information Theory in Reinforcing the Competencies of the Collegiate (러프집합과 정보이론을 이용한 대학생역량강화 진단)

  • Park, In-Kyoo
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.257-264
    • /
    • 2014
  • This paper presents the core competencies diagnosis system which targeted our collegiate students in an attempt to induce the core competencies for reinforcing the learning and employment capabilities. Because these days data give rise to a high level of redundancy and dimensionality with time complexity, they are more likely to have spurious relationships, and even the weakest relationships will be highly significant by any statistical test. So as to address the measurement of uncertainties from the classification of categorical data and the implementation of its analytic system, an uncertainty measure of rough entropy and information entropy is defined so that similar behaviors analysis is carried out and the clustering ability is demonstrated in the comparison with the statistical approach. Because the acquired and necessary competencies of the collegiate is deduced by way of the results of the diagnosis, i.e. common core competencies and major core competencies, they facilitate not only the collegiate life and the employment capability reinforcement but also the revitalization of employment and the adjustment to college life.

lustering of Categorical Data using Rough Entropy (러프 엔트로피를 이용한 범주형 데이터의 클러스터링)

  • Park, Inkyoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.183-188
    • /
    • 2013
  • A variety of cluster analysis techniques prerequisite to cluster objects having similar characteristics in data mining. But the clustering of those algorithms have lots of difficulties in dealing with categorical data within the databases. The imprecise handling of uncertainty within categorical data in the clustering process stems from the only algebraic logic of rough set, resulting in the degradation of stability and effectiveness. This paper proposes a information-theoretic rough entropy(RE) by taking into account the dependency of attributes and proposes a technique called min-mean-mean roughness(MMMR) for selecting clustering attribute. We analyze and compare the performance of the proposed technique with K-means, fuzzy techniques and other standard deviation roughness methods based on ZOO dataset. The results verify the better performance of the proposed approach.