• Title/Summary/Keyword: 러쉬톤 터빈

Search Result 10, Processing Time 0.017 seconds

A Study on the Mixing Characteristics in a Rushton Turbine Reactor by a Laser Induced Fluorescence Method (레이저 형광여기법(LIF)를 이용한 러쉬톤 터빈 교반기의 혼합특성에 관한 연구)

  • Jeong, Eun-Ho;Kim, Gyeong-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1145-1152
    • /
    • 2002
  • A non-intrusive Planar Laser-Induced Fluorescence(PLIF) technique was applied to study the turbulent mixing process in a Rushton turbine reactor. Instantaneous and ensemble averaged concentration fields was obtained by measuring the fluorescence intensity of Rhodamine B tracer excited by a thin Nd:Yag laser sheet illuminating the whole center plane of the stirred tank. The gray level images captured by a 14-bit cooled CCD camera could be transformed to the local concentration values using a calibration matrix. The dye injection point was selected at the tank wall with three quarter. height (3/4H) from the tank bottom to observe the mixing characteristics in upper bulk flow region. There exist distinct two time scales: the rapid decay of mean concentration after the dye infusion reflects the large scale turbulent mixing while the fellowed slow decay reveals the small scale molecular mixing. The temporal change of concentration variance field conjectures the two sequential processes for the batch type mixing. An inactive column of water is existed above the impeller disk, in which the fluid rotates with the shaft but is isolated from the mean bulk flow.

A Study on the Turbulent Characteristics of Rushton Turbine Mixer by Simultaneous Measurement of Velocity and Concentration field with Stereo-PIV/PLIF Technique (Stereo-PIV/LIF의 속도장과 농도장 동시측정 기법을 이용한 러쉬톤 교반기내 난류특성에 관한 연구)

  • Min, Young-Uk;Kim, Yun-Gi;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.365-370
    • /
    • 2004
  • Simultaneous measurement with PLIF(Planar Laser-Induced Fluorescence) and Stereo-PIV(Stereo Particle Image Velocimetry) was performed to investigate the structural characteristics of flow field in Rushton Turbine Mixer. Instantaneous 3D velocity fields are measured by two 2K${\times}$2K CCD cameras focused on an object plane with the angular displacement methods while the concentration fields are obtained through the measurement of the fluorescence intensity of Rhodamine B tracer excited by the second pulse of Nd:Yag laser light. Image distortion due to the camera view-angle is compensated by a mapping function. Finally, the spatial structures of turbulent flow around Rushton turbine were identified by the calculation of synchronized data of the velocity field and concentration field.

A Study on the Turbulent Characteristics of Rushton Turbine Mixer by Simultaneous Measurement of Velocity and Concentration Field with Stereo-PIV/PLIF Technique (Stereo-PIV/PLIF의 속도장과 농도장 동시측정 기법을 이용한 러쉬톤 교반기내 난류특성에 관한 연구)

  • Min, Young-Uk;Kim, Yun-Gi;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.694-699
    • /
    • 2003
  • Simultaneous measurement with PLIF(Planar Laser-Induced Fluorescence) and Stereo-PIV(Stereoscopic Particle Image Velocimetry) was performed to investigate the structural characteristics of flow field in Rushton Turbine Mixer. Instantaneous 3D velocity fields are measured by two 2K ${\times}$ 2K CCD cameras focused on an object plane with the angular displacement methods while the concentration fields are obtained through the measurement of the fluorescence intensity of Rhodamine B tracer excited by the second pulse of Nd:Yag laser light. Image distortion due to the camera view-angle is compensated by a mapping function. Finally, the spatial structures of turbulent mixing around Rushton turbine were identified by the calculation of cross-correlation fields between the velocity and concentration field.

  • PDF

Characteristics of the Starting Flow of a Rushton Turbine Mixer (러쉬톤 교반기의 초기 비정상 유동 특성)

  • Park, Gyeong-Hyeon;Kim, Gyeong-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1543-1551
    • /
    • 2001
  • The characteristics of starting flow of a six-blade Rushton turbine mixer were investigated by using a cinematic Particle Image Velocimetry technique. The flows were quantified by measurements of velocity fields with a 4 ms time interval for a blade rotational speed of 100 r.p.m, so that the turbine Reynolds number(ND$^2$/ ν) was fixed to 6,960. The radial shedding of the trailing vortices starts from passing four blades after the beginning of rotation. It clearly shows that the vortex pairing phenomena caused by the interactions between trailing cortices firm consequtive blades. The average convection velocity of the radial flow is found to be 28 % of the tip velocity. The starting flow seems to arrive at a steady state after 8 revolutions in this study, which corresponds nearly one circulation through the bulk flow trajectory with the average radial convection velocity.

Development of a High Resolution Cinematic Particle Image Velocimetry and Its Application to measurement of Unsteady Complex Turbulent Flows (고분해능 Cinematic PIV 시스템의 개발과 비정상 복잡 난류유동측정에의 응용)

  • Kim, Kyung-Chun;Park, Kyung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.536-541
    • /
    • 2001
  • A high resolution digital cinematic Particle Image Velocimetry(PIV) has been developed. The system consists of a high speed CCD camera, a continuous Ar-ion laser and a computer with camera controller. To improve the spatial resolution, we adopt a Recursive Technique for velocity interrogation. At first, we obtain a velocity vector for a larger interrogation window size based on the conventional two-frame cross-correlation PIV analysis using the FFT algorithm. Based on the knowing velocity information, more spatially resolved velocity vectors are obtained in the next iteration step with smaller interrogation windows. The correct velocity vector at the first step is found to be critical, so we apply a Multiple Correlation Validation(MCV) technique in order to decrease the spurious vectors. The MCV technique turns out to improve SNR(Signal to Noise Ratio) of the correlation table. The developed cinematic PIV method has been applied to the measurement of the unsteady flow characteristics of a Rushton turbine mixer. A total of 3,245 instantaneous velocity vectors were successfully obtained with 4 ms time resolution. The acquired spatial resolution corresponds the performance of the conventional high resolution digital PIV system using a $1K{\times}1K$ CCD camera.

  • PDF

A Study on the Mixing Characteristics in Complex Turbulent Flow by a Laser Induced Fluorescence Method (레이저 형광여기법(LIF)를 이용한 복잡 난류유동장의 혼합특성에 관한 연구)

  • Kim, Kyung-Chun;Jeong, Eun-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.542-547
    • /
    • 2001
  • A non-intrusive Planar Laser-Induced Fluorescence(PLIF) technique was applied to study the turbulent mixing process in a Rushton turbine reactor. Instantaneous and ensemble averaged concentration fields are obtained by measuring the fluorescence intensity of Rhodamine B tracer excited by a thin Nd:Yag laser sheet illuminating the whole center plane of the stirred tank. The gray level images captured by a 14-bit cooled CCD camera can be transformed to the local concentration values using a calibration matrix. The dye injection point was selected at the tank wall with three quarter height (3/4H) from the tank bottom to observe the mixing characteristics in upper bulk flow region. There exist distinct two time scales: the rapid decay of mean concentration in each region after the dye infusion reflects the large scale mixing while the followed slow decay reveals the small scale mixing. The temporal change of concentration probability functions conjectures the two sequential processes in the batch type mixing. An inactive column of water existed above the impeller disk, in which the fluid rotates with the shaft but is isolated from the mean bulk flow.

  • PDF

Identification on the Three-Dimensional Vortical Structures of Impeller Flow by a Multi-Plane Stereoscopic PIV Method (스테레오 PIV 기법에 의한 임펠러 와류유동의 3차원 구조측정)

  • Yoon, Sang-Youl;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.690-695
    • /
    • 2001
  • The three-dimensional spatial structures of impeller flow created by a six bladed Rushton turbine have identified based on the volumetric velocity information from multi-plane stereoscopic PIV measurements. A total of 10 planes with 2 mm space with a 50 mm by 64 mm size of the field of view were targeted. To reduce the depth of focus, we adopted an angle offset configuration which satisfied the Scheimpflug condition. The distortion compensation procedure was utilized during the in situ calibration. Phase-locked instantaneous data were ensemble averaged and interpolated in order to obtain mean 3-D, volumetric velocity fields on a 60 degree sector of a cylindrical ring volume enclosing the turbine blade. Using the equi-vorticity surface rendering, the spatial structure of the trailing vortices was clearly demonstrated. Detail flow characteristics of the radial jet reported in previous studies of mixer flows were easily identified.

  • PDF

Development of a High Resolution Digital Cinematic Particle Image Velocimetry (고해상도 Cinematic PIV의 개발)

  • Park, Gyeong-Hyeon;Kim, Gyeong-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1535-1542
    • /
    • 2001
  • A high resolution digital cinematic Particle Image Velocimetry(PIV) has been developed. The system consists of a high speed CCD camera, a continuous Ar-ion laser and a computer with camera controller. To improve the spatial resolution, we adopt a Recursive Technique for velocity interrogation. At first, we obtain a velocity vector fur a larger interrogation window size based on the conventional two-frame cross-correlation PIV analysis using the FFT algorithm. Based on the knowing velocity information, more spatially resolved velocity vectors are obtained in the next iteration step with smaller interrogation windows. When the correct velocity vector at the first step is found to be critical, a Multiple Correlation Validation(MCV) technique is applied to decrease the spurious vectors. The MCV technique turns out to improve SNR(Signal to Noise Ratio) of the correlation table. The developed cinematic PIV method has been applied to the measurement of the unsteady flow characteristics of a Rushton turbine mixer. A total of 3,245 instantaneous velocity vectors were successfully obtained with 4 ms time resolution. The acquired spatial resolution corresponds to the conventional high resolution digital PIV system using a 1K ${\times}$ 1K CCD camera.

Identification on the Three-Dimensional Vortical Structures of Impeller Flow by a Multi-Plane Stereoscopic PIV Method (스테레오 PIV 기법에 의한 임펠러 와류유동의 3차원 구조측정)

  • Yoon, Sang-Youl;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.773-780
    • /
    • 2003
  • The three-dimensional spatial structures of impeller flow created by a six bladed Rushton turbine have identified based on the volumetric velocity information from multi-plane stereoscopic PIV measurements. A total of 10 planes with 2 mm space and a 50 mm by 64 mm size of the field of view were targeted. To reduce the depth of focus, we adopted an angle offset configuration which satisfied the Scheimpflug condition. The distortion compensation procedure was utilized during the in situ calibration. Phase-locked instantaneous data were ensemble averaged and interpolated in order to obtain mean 3-D. volumetric velocity fields on a 60 degree sector of a cylindrical ring volume enclosing the turbine blade. Using the equi-vorticity surface rendering, the spatial structure of the trailing vortices was clearly demonstrated. Detail flow characteristics of the radial jet reported in previous studies of mixer flows were easily identified.

The study of Flow Structure in a Mixing Tank for Different Reynolds Numbers Using LES (대형 와 모사를 통한 레이놀즈 수 증가에 따른 혼합 탱크 내의 유동 구조의 연구)

  • Yoon, Hyun-Sik;Chun, Ho-Hwan;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1290-1298
    • /
    • 2003
  • The stirred tank reactor is one of the most commonly used devices in industry for achieving mixing and reaction. Here we report on results obtained from the large eddy simulations of flow inside the tank performed using a spectral multi-domain technique. The computations were driven by specifying the impeller-induced flow at the blade tip radius. Stereoscopic PlY measurements (Hill et al. $^{(1)}$) along with the theoretical model of the impeller-induced flow (Yoon et al. $^{(2)}$) were used in defining the impeller-induced flow as superposition of circumferential, jet and tip vortex pair components. Large eddy simulation of flow in a stirred tank was carried out for the three different Reynolds numbers of 4000, 16000 and 64000. The effect of different Reynolds numbers is well observed in both instantaneous and time averaged flow fields. The instantaneous and mean vortex structures are identified by plotting an isosurfaces of swirling strength for all Reynolds numbers. The Reynolds number dependency of the non-dimensional eddy viscosity, resolved scale and subgrid scale dissipations is clearly shown in this study.