• Title/Summary/Keyword: 러닝 속도

Search Result 485, Processing Time 0.028 seconds

Development of Technique in Super Resolution domain that eliminates unnecessary Correlation information between Pixels & Channels. (픽셀, 채널간 불필요한 상호연관 정보를 제거하는 초해상화 딥러닝 기법)

  • Kang, Jung-Heum;Bae, Sung-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.656-659
    • /
    • 2020
  • 초해상화 딥러닝 기법은 학습 시 수렴하기까지 최소 수백 번의 에폭을 필요로 하며 오랜 시간이 걸린다. 최근, 영상 인식용 딥러닝 모델에서는 학습 수렴 속도를 향상시키기 위해 픽셀, 채널간 불필요한 상호연관 정보를 제거하는 Deconvolution 기술이 제안되었다. 본 논문에서는 최초로 Deconvolution 기술을 초해상화 딥러닝 방법에 적용하여 학습 수렴 속도 증가를 시도했다. 영상 인식 딥러닝 기법과 다르게 초해상화 딥러닝 기법은 이미지 특성 추출 부분과 이미지 복원 부분의 정보를 보존하는 것이 중요하기 때문에, EDSR을 Baseline 모델로 사용하여 양쪽 끝의 레이어는 기존의 Convolution 연산을 그대로 유지하고, 중간 레이어의 ResBlock 내의 Convolution 연산만 Deconvolution 연산으로 바꿔서 구성하였다. 초해상화 벤치마크 데이터셋을 사용한 실험 결과, 수렴속도가 빨라지지 않는 결과를 도출했다. 본 논문에서는 Deconvolution 기술이 Baseline 모델의 성능을 개선하지 못하는 이유를 초해상화 분야에서 기본적으로 적용되는 Residual Learning 기법 때문으로 분석했다.

  • PDF

Deep Learning Model for Weather Forecast based on Knowledge Distillation using Numerical Simulation Model (수치 모델을 활용한 지식 증류 기반 기상 예측 딥러닝 모델)

  • 유선희;정은성
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.530-531
    • /
    • 2023
  • 딥러닝에서 지식 증류 기법은 큰 모델의 지식을 작은 모델로 전달하여 작은 모델의 성능을 개선하는 방식이다. 지식 증류 기법은 모델 경량화, 학습 속도 향상, 학습 정확도 향상 등에 활용될 수 있는데, 교사 모델이라 불리는 큰 모델은 일반적으로 학습된 딥러닝 모델을 사용한다. 본 연구에서는 학습된 딥러닝 모델 대신에 수치 기반 시뮬레이션 모델을 사용함으로써 어떠한 효과가 있는지 검증하였으며, 수치 모델을 활용한 기상 예측 모델에서의 지식 증류는 기존 단독 딥러닝 모델 학습 대비 더 작은 학습 횟수(epoch)에서도 동일한 에러 수준(RMSE)까지 도달하여, 학습 속도 측면에서 이득이 있음을 확인하였다.

Analysis of precipitation data for traffic speed prediction (교통 속도 예측을 위한 강수량 데이터 분석)

  • Son, Jiwon;Song, Junho;Kim, Namhyuk;Kim, Taeheon;Park, Sunghwan;Kim, Sang-wook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.308-309
    • /
    • 2021
  • 과거의 연구들은 교통 속도만을 활용하여 교통 속도 예측 문제에 접근했다. 그러나 교통 속도의 비선형성으로 인해 정확한 예측이 어려워, 최근에는 교통 속도에 영향을 미칠 수 있는 외부의 요인을 활용해 정확도를 높인 연구들이 이루어지는 추세이다. 그 중에서도 강수량은 직관적으로 교통 속도와 관련이 있을 것으로 생각되어 자주 사용된다. 다만, 실제로 교통 속도가 강수량에 얼마나 영향을 받는지는 확인되지 않고 대부분의 연구가 적은 양의 데이터로 이루어지기에 강수량이 딥 러닝모델의 정확도를 향상시킬 수 있다고 단언하기는 어렵다. 본 논문은 강수량 데이터가 교통 속도를 변화시키는 양을 정량적으로 측정하고, 딥 러닝 모델의 성능에 미치는 영향을 분석하였다. 그 결과, 강수량이 높을수록 속도가 크게 감소하고 딥 러닝 모델의 정확도 또한 향상되는 것을 확인하였다.

A Context Awareness Middleware Model for U-Learning (U-러닝용 상황 인식 미들웨어 모델)

  • Lho, Young-Uhg;Jung, Deok-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.551-554
    • /
    • 2007
  • 정보 통신 기술의 발달로 유비쿼터서 컴퓨팅 기술을 이용한 u-러닝이 교육의 새로운 패러다임으로 대두되고 있다. u-러닝은 학습자들이 생활 속에서 물리적, 시간적 제약 없이 원하는 교육내용과 방법을 통해 학습하고, 이를 생활 속에서 적용할 수 있게 하였다. 본 논문에서는 u-러닝을 위해 필수적인 상황인식 미들웨어의 모델을 제안한다.

  • PDF

Development of Traffic Speed Prediction Model Reflecting Spatio-temporal Impact based on Deep Neural Network (시공간적 영향력을 반영한 딥러닝 기반의 통행속도 예측 모형 개발)

  • Kim, Youngchan;Kim, Junwon;Han, Yohee;Kim, Jongjun;Hwang, Jewoong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.1
    • /
    • pp.1-16
    • /
    • 2020
  • With the advent of the fourth industrial revolution era, there has been a growing interest in deep learning using big data, and studies using deep learning have been actively conducted in various fields. In the transportation sector, there are many advantages to using deep learning in research as much as using deep traffic big data. In this study, a short -term travel speed prediction model using LSTM, a deep learning technique, was constructed to predict the travel speed. The LSTM model suitable for time series prediction was selected considering that the travel speed data, which is used for prediction, is time series data. In order to predict the travel speed more precisely, we constructed a model that reflects both temporal and spatial effects. The model is a short-term prediction model that predicts after one hour. For the analysis data, the 5minute travel speed collected from the Seoul Transportation Information Center was used, and the analysis section was selected as a part of Gangnam where traffic was congested.

The Road Speed Sign Board Recognition, Steering Angle and Speed Control Methodology based on Double Vision Sensors and Deep Learning (2개의 비전 센서 및 딥 러닝을 이용한 도로 속도 표지판 인식, 자동차 조향 및 속도제어 방법론)

  • Kim, In-Sung;Seo, Jin-Woo;Ha, Dae-Wan;Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.699-708
    • /
    • 2021
  • In this paper, a steering control and speed control algorithm was presented for autonomous driving based on two vision sensors and road speed sign board. A car speed control algorithm was developed to recognize the speed sign by using TensorFlow, a deep learning program provided by Google to the road speed sign image provided from vision sensor B, and then let the car follows the recognized speed. At the same time, a steering angle control algorithm that detects lanes by analyzing road images transmitted from vision sensor A in real time, calculates steering angles, controls the front axle through PWM control, and allows the vehicle to track the lane. To verify the effectiveness of the proposed algorithm's steering and speed control algorithms, a car's prototype based on the Python language, Raspberry Pi and OpenCV was made. In addition, accuracy could be confirmed by verifying various scenarios related to steering and speed control on the test produced track.

Image Machine Learning System using Apache Spark and OpenCV on Distributed Cluster (Apache Spark와 OpenCV를 활용한 분산 클러스터 컴퓨팅 환경 대용량 이미지 머신러닝 시스템)

  • Hayoon Kim;Wonjib Kim;Hyeopgeon Lee;Young Woon Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.33-34
    • /
    • 2023
  • 성장하는 빅 데이터 시장과 빅 데이터 수의 기하급수적인 증가는 기존 컴퓨팅 환경에서 데이터 처리의 어려움을 야기한다. 특히 이미지 데이터 처리 속도는 데이터양이 많을수록 현저하게 느려진다. 이에 본 논문에서는 Apache Spark와 OpenCV를 활용한 분산 클러스터 컴퓨팅 환경의 대용량 이미지 머신러닝 시스템을 제안한다. 제안하는 시스템은 Apache Spark를 통해 분산 클러스터를 구성하며, OpenCV의 이미지 처리 알고리즘과 Spark MLlib의 머신러닝 알고리즘을 활용하여 작업을 수행한다. 제안하는 시스템을 통해 본 논문은 대용량 이미지 데이터 처리 및 머신러닝 작업 속도 향상 방법을 제시한다.

유비쿼터스러닝의 성공 요소

  • Jeong, Ui-Seok
    • Digital Contents
    • /
    • no.7 s.146
    • /
    • pp.59-61
    • /
    • 2005
  • 정보통신 분야는 물론, 문화, 교육 등 생활 속 모든 분야에서 유비쿼터스라는 수식어가 따라다니고 있는 것을 많이 볼 수 있다. 관련 전문가들은 2010년경에는 유비쿼터스가 우리 생활에서 대중화가 될 것이며 이에 따른 부가가치 규모도 80조원에 이를 것으로 전망하고 있다. 교육 분야도 아날로그 환경 하에서 주변 환경 변화에 더디게 반응해 왔던 과거와 달리 최근 조금은 걱정스러울 정도로 IT의 신기술에 발 빠르게 적응하면서 e러닝, T러닝, M러닝, U러닝 등의 새로운 신조어들이 생겨나고 있다. 이에 진정 살아 있는 e러닝의 최종 모습이라고 불려지고 있는 유비쿼터스 학습(U러닝)에 대해 살펴보고, U러닝이 성공하기 위해서는 어떠한 요소들이 필요한가에 대해 살펴봤다.

  • PDF

Deep-Learning Seismic Inversion using Laplace-domain wavefields (라플라스 영역 파동장을 이용한 딥러닝 탄성파 역산)

  • Jun Hyeon Jo;Wansoo Ha
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.84-93
    • /
    • 2023
  • The supervised learning-based deep-learning seismic inversion techniques have demonstrated successful performance in synthetic data examples targeting small-scale areas. The supervised learning-based deep-learning seismic inversion uses time-domain wavefields as input and subsurface velocity models as output. Because the time-domain wavefields contain various types of wave information, the data size is considerably large. Therefore, research applying supervised learning-based deep-learning seismic inversion trained with a significant amount of field-scale data has not yet been conducted. In this study, we predict subsurface velocity models using Laplace-domain wavefields as input instead of time-domain wavefields to apply a supervised learning-based deep-learning seismic inversion technique to field-scale data. Using Laplace-domain wavefields instead of time-domain wavefields significantly reduces the size of the input data, thereby accelerating the neural network training, although the resolution of the results is reduced. Additionally, a large grid interval can be used to efficiently predict the velocity model of the field data size, and the results obtained can be used as the initial model for subsequent inversions. The neural network is trained using only synthetic data by generating a massive synthetic velocity model and Laplace-domain wavefields of the same size as the field-scale data. In addition, we adopt a towed-streamer acquisition geometry to simulate a marine seismic survey. Testing the trained network on numerical examples using the test data and a benchmark model yielded appropriate background velocity models.

A Performance Analysis of Model Training Due to Different Batch Sizes in Synchronous Distributed Deep Learning Environments (동기식 분산 딥러닝 환경에서 배치 사이즈 변화에 따른 모델 학습 성능 분석)

  • Yerang Kim;HyungJun Kim;Heonchang Yu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.79-80
    • /
    • 2023
  • 동기식 분산 딥러닝 기법은 그래디언트 계산 작업을 다수의 워커가 나누어 병렬 처리함으로써 모델 학습 과정을 효율적으로 단축시킨다. 배치 사이즈는 이터레이션 단위로 처리하는 데이터 개수를 의미하며, 학습 속도 및 학습 모델의 품질에 영향을 미치는 중요한 요소이다. 멀티 GPU 환경에서 작동하는 분산 학습의 경우, 가용 GPU 메모리 용량이 커짐에 따라 선택 가능한 배치 사이즈의 상한이 증가한다. 하지만 배치 사이즈가 학습 속도 및 학습 모델 품질에 미치는 영향은 GPU 활용률, 총 에포크 수, 모델 파라미터 개수 등 다양한 변수에 영향을 받으므로 최적값을 찾기 쉽지 않다. 본 연구는 동기식 분산 딥러닝 환경에서 실험을 통해 최적의 배치 사이즈 선택에 영향을 미치는 주요 요인을 분석한다.