• 제목/요약/키워드: 러닝모드 분석

검색결과 10건 처리시간 0.027초

복합 적층판의 딥러닝 기반 파괴 모드 결정 (Deep Learning-based Fracture Mode Determination in Composite Laminates)

  • 무하마드 무자밀 아자드;아타 우르 레만 샤;M.N. 프라브하카르;김흥수
    • 한국전산구조공학회논문집
    • /
    • 제37권4호
    • /
    • pp.225-232
    • /
    • 2024
  • 본 논문에서는 딥러닝을 활용하여 복합재 적층판의 파괴 모드를 결정하는 방법을 제안하였다. 수많은 엔지니어링 응용 분야에서 적층 복합재의 사용이 증가함에 따라 무결성과 성능을 보장하는 것이 중요해졌다. 그러나 재료의 이방성으로 인해 복잡하게 나타나는 파괴모드를 식별하는 것은 도메인 지식이 필요하고, 시간이 많이 드는 작업이다. 따라서 이러한 문제를 해결하기 위해 본 연구에서는 인공 지능(AI) 기술을 활용하여 적층 복합재의 파괴 모드 분석을 자동화하는 것을 목표로 하였다. 이 목표를 달성하기 위해 적층된 복합재에서 파손된 인장 시험편의 주사 전자 현미경(SEM) 이미지를 얻어 다양한 파괴 모드를 확보하였다. 이러한 SEM 이미지는 섬유 파손, 섬유 풀아웃, 혼합 모드 파괴, 매트릭스 취성 파손 및 매트릭스 연성 파손과 같은 다양한 파손 모드를 기준으로 분류하였다. 다음으로 모든 클래스의 집합 데이터를 학습, 테스트, 검증 데이터 세트로 구분하였다. 두 가지 딥 러닝 기반 사전 훈련 모델인 DenseNet과 GoogleNet을 이용해 각 파괴 모드에 대한 차별적 특징을 학습하도록 훈련하였다. DenseNet 및 GoogleNet 모델은 각각 (94.01% 및 75.49%) 및 (84.55% 및 54.48%)의 훈련 및 테스트 정확도를 보여주었다. 그런 다음 훈련된 딥 러닝 모델은 검증 데이터 세트를 활용해 검증하였다. 더 깊은 아키텍처로 인해 DenseNet 모델이 고품질 특징을 추출하여 84.44% 검증 정확도(GoogleNet 모델보다 36.84% 더 높음)를 얻을 수 있음을 확인하였다. 이는 DenseNet 모델이 높은 정밀도로 파괴 모드를 예측함으로써 적층 복합재의 파손 분석을 수행하는 데 효과적이라는 것을 알 수 있다.

LSTM 모델 기반 주행 모드 인식을 통한 자율 주행에 관한 연구 (Automated Vehicle Research by Recognizing Maneuvering Modes using LSTM Model)

  • 김은희;오혜연
    • 한국ITS학회 논문지
    • /
    • 제16권4호
    • /
    • pp.153-163
    • /
    • 2017
  • 본 연구에서는 운전자 별로 생활 중에 이동하는 주행 도로의 특징 및 교통상황이 서로 다르며 운전습관이 상이함을 고려하여, 운전자 혹은 운전자 그룹별 기계학습모형을 구성하고, 학습된 모델을 분석하여 운전자의 주행모드 별 특징을 탐색하여 자율 주행 자동차를 시뮬레이션 하였다. 운전지식을 활용하여 주행조작 전후 센서의 동작 상황에 따라 8종류의 종방향 모드와 4종류 회전모드로 구분하고, 종방향 모드와 회전모드를 결합한 21개의 결합형 주행모드로 세분화 하였다. 주행모드가 레이블 된 시계열 데이터에 대해 딥러닝 지도학습 모델인 RNN (Recurrent Neural Network), LSTM (Long Short-Term Memory), Bi-LSTM 모델을 활용하여서 운전자 별 혹은 운전자 그룹별 주행데이터를 학습하고, 학습된 모델을 테스트 데이터 셋에서 주행 모드인식률을 검증하였다. 실험 데이터는 미국 VTTI 기관에서 수집된 22명의 운전자의 1,500개의 실생활 주행 데이터가 사용되었다. 주행 모드 인식에 있어, 데이터 셋에 대해 Bi-LSTM 모델이 RNN, LSTM 모델에 비해 향상된 성능을 보였으며, 최대 93.41%의 주행모드 인식률을 확인하였다.

머신러닝을 이용한 알루미늄 전해 커패시터 고장예지 (Machine Learning Based Failure Prognostics of Aluminum Electrolytic Capacitors)

  • 박정현;석종훈;천강민;허장욱
    • 한국기계가공학회지
    • /
    • 제19권11호
    • /
    • pp.94-101
    • /
    • 2020
  • In the age of industry 4.0, artificial intelligence is being widely used to realize machinery condition monitoring. Due to their excellent performance and the ability to handle large volumes of data, machine learning techniques have been applied to realize the fault diagnosis of different equipment. In this study, we performed the failure mode effect analysis (FMEA) of an aluminum electrolytic capacitor by using deep learning and big data. Several tests were performed to identify the main failure mode of the aluminum electrolytic capacitor, and it was noted that the capacitance reduced significantly over time due to overheating. To reflect the capacitance degradation behavior over time, we employed the Vanilla long short-term memory (LSTM) neural network architecture. The LSTM neural network has been demonstrated to achieve excellent long-term predictions. The prediction results and metrics of the LSTM and Vanilla LSTM models were examined and compared. The Vanilla LSTM outperformed the conventional LSTM in terms of the computational resources and time required to predict the capacitance degradation.

문맥적응적 화면내 예측 모델 학습 및 부호화 성능분석 (Context-Adaptive Intra Prediction Model Training and Its Coding Performance Analysis)

  • 문기화;박도현;김재곤
    • 방송공학회논문지
    • /
    • 제27권3호
    • /
    • pp.332-340
    • /
    • 2022
  • 최근 딥러닝을 적용하는 비디오 압축에 대한 연구가 활발히 진행되고 있다. 특히, 화면내 예측 부호화의 성능 한계를 극복할 수 있는 방안으로 딥러닝 기반의 화면내 예측 부호화 기술이 연구되고 있다. 본 논문은 신경망 기반 문맥적응적 화면내 예측 모델의 학습기법과 그 부호화 성능분석을 제시한다. 즉, 본 논문에서는 주변 참조샘플의 문맥정보를 입력하여 현재블록을 예측하는 기존의 합성곱 신경망(CNN: Convolutional Neural network) 기반의 화면내 예측 모델을 학습한다. 학습된 화면내 예측 모델을 HEVC(High Efficiency Video Coding)의 참조 소프트웨어인 HM16.19에 추가적인 화면내 예측모드로 구현하고 그 부호화 성능을 분석하였다. 실험결과 학습한 예측 모델은 HEVC 대비 AI(All Intra) 모드에서 0.28% BD-rate 부호화 성능 향상을 보였다. 또한 비디오 부호화 블록분할 구조를 고려하여 학습한 경우의 성능도 확인하였다.

4WD 차량의 주행 차체진동 개선을 위한 Driveline 최적화 (Optimization of 4WD Driveline for Improvement of Body Vibration in Driving Condition)

  • 이재운;민경재;정승균
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.861-865
    • /
    • 2001
  • Generally the noise and vibration characteristics of 4WD vehicle is closely related to the characteristics of driveline such as bending mode, torsional mode, unbalance and nonuniformity of propeller shaft. In this paper the 4WD vehicle which has body vibration problem in high speed driving condition was tested. The sources of the body vibration and its transfer path are investigated by experimental approach. According to the experimental assessment, the body vibration is caused by the nonuniformity of joint of propeller shaft. And this paper presents a kinematic model of a vehicle driveline for the optimization of a driveline characteristics. Finally the optimized result of the drive line has been verified through the experiment.

  • PDF

비선형 회귀를 이용한 학습도우미 애플리케이션 (Learning Assistant Application Using Non-Linear Regression)

  • 장은영;김강우;김민식;류다은;박승묵;고병철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 추계학술대회
    • /
    • pp.235-237
    • /
    • 2021
  • 코로나 19로 대학교 강의들이 비대면 방식으로 전환되고 있는데, 기존의 교수학습 지원센터는 웹 환경만을 제공한다. 따라서 본 논문에서는 모바일 애플리케이션을 통해 수강생들이 교수학습 지원센터에 쉽게 접근할 수 있도록 도와주는 시스템을 개발하였다. 애플리케이션에서 학생들의 강의 시간 및 시험, 과제 등의 일정을 관리해주고, 푸시 알림을 제공해주는 학습 도우미의 역할을 수행한다. 뿐만 아니라 직관적인 인터페이스, 다크 모드, scroll-to-top 버튼 등을 고려한 디자인으로 사용자의 편리함을 도모한다. 학습 도우미 애플리케이션의 가장 핵심기능 중 하나는 머신러닝 기법 중 비선형 회귀(Non-Linear Regression)을 이용해 성적 데이터를 분석해주는 차별화된 기능이다. 이를 위해 최종적인 성적을 종속변수, 일정 기간까지의 성적을 독립변수로 설정하여 기존의 성적 데이터를 바탕으로 종속변수인 최종성적을 랜덤 포레스트 비선형 회귀분석으로 예측하는 알고리즘을 제시하고자 한다.

  • PDF

Patent Keyword Analysis using Gamma Regression Model and Visualization

  • Jun, Sunghae
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권8호
    • /
    • pp.143-149
    • /
    • 2022
  • 특허문서는 연구 개발된 기술에 대한 상세한 결과를 포함하고 있기 때문에 효과적인 기술분석을 위한 다양한 특허분석 방법에 대한 연구가 진행되고 있다. 특히 통계학과 머신러닝 알고리즘에 의한 정량적인 특허분석에 대한 연구가 최근 활발하게 이루어지고 있다. 정량적 특허분석에서 가장 많이 사용되는 특허 데이터는 기술 키워드이다. 기술 키워드 데이터를 분석하는 기존의 방법은 대부분 음의 무한대부터 양의 무한대까지 실수 공간 전체를 확률변수의 값으로 갖는 가우시안 확률분포에 기반한 모형이었다. 본 논문에서는 이론적으로 0부터 양의 무한대까지의 값을 갖는 특허 키워드의 빈도 데이터를 분석하기 위하여 감마 확률분포를 활용한 모형을 제안한다. 또한 감마 회귀모형의 회귀방정식을 결정하기 위하여 키워드 간의 기술 연관성을 시각화하는 2-모드 네트워크를 구축한다. 제안 방법과 기존의 가우시안 기반의 분석모형 간의 성능평가를 위하여 실제 특허 데이터를 수집하여 분석한다.

SVM 기법을 적용한 구름베어링의 부식 고장진단 (Corrosion Failure Diagnosis of Rolling Bearing with SVM)

  • 고정일;이의영;이민재;최성대;허장욱
    • 한국기계가공학회지
    • /
    • 제20권9호
    • /
    • pp.35-41
    • /
    • 2021
  • A rotor is a crucial component in various mechanical assemblies. Additionally, high-speed and high-efficiency components are required in the automotive industry, manufacturing industry, and turbine systems. In particular, the failure of high-speed rotating bearings has catastrophic effects on auxiliary systems. Therefore, bearing reliability and fault diagnosis are essential for bearing maintenance. In this work, we performed failure mode and effect analysis on bearing rotors and determined that corrosion is the most critical failure type. Furthermore, we conducted experiments to extract vibration characteristic data and preprocess the vibration data through principle component analysis. Finally, we applied a machine learning algorithm called support vector machine to diagnose the failure and observed a classification performance of 98%.

실내외 환경과 사용자의 행동을 고려한 스마트 홈 서비스 시스템 (Smart Home Service System Considering Indoor and Outdoor Environment and User Behavior)

  • 김재정;김창복
    • 한국항행학회논문지
    • /
    • 제23권5호
    • /
    • pp.473-480
    • /
    • 2019
  • 스마트 홈은 가정의 가전제품, 에너지 소비 장치, 보안기기 등 모든 사물을 통신망으로 연결해 모니터링 및 제어할 수 있는 기술이다. 스마트 홈은 자동제어 뿐 아니라 상황과 사용자의 취향을 학습하고, 이에 맞는 결과를 스스로 제공하는 방향으로 발전하고 있다. 본 논문은 사용자의 행동을 감지하여 사용자의 특성에 맞는 쾌적한 실내 환경 제어 서비스를 할 수 있는 모델을 제안하였다. 전체 시스템 구성은 센서와 와이파이를 탑재한 ESP8266, 실시간 데이터베이스인 firebase, 스마트 폰 어플로 구성된다. 본 모델은 사용자가 가전기기 작동시의 학습모드, 학습 결과를 통한 학습 제어, 실내와 실외 센서의 값을 이용한 자동 환기 등의 기능으로 구분된다. 학습은 에어컨, 가습기, 공기청정지 등 가전기기 제어시의 온도와 습도에 대한 이동 평균을 이용하였다. 본 시스템은 데이터베이스에 지속적으로 수집된 데이터를 다양한 기계학습과 딥 러닝을 통해 사용자의 특성을 분석하고 예측하여 보다 고 품질의 서비스를 제공할 수 있다.

Deep Learning Based Emergency Response Traffic Signal Control System

  • Jeong-In, Park
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권2호
    • /
    • pp.121-129
    • /
    • 2023
  • 이 논문에서 우리는 응급상황에 대응하여 일정 구간의 교통신호를 능동적으로 제어함으로써 재산과 인명 손실을 최소화할 수 있는 응급상황 대응 교통신호 제어 시스템을 개발하였다. 응급 차량 단말기에서 식별정보 및 GPS 정보를 포함한 응급신호를 송출하면 카메라에서 주위 영상을 획득하게 되고, 딥러닝 기반으로 객체를 분석하여 객체의 위치, 종류, 크기 등 정보를 가지는 객체정보를 출력한다. 이 객체를 트래킹한 정보를 생성하여 신호체계를 검출한 후 신호체계를 응급모드로 전환하여 수신받은 GPS 정보를 기준으로 응급 차량을 식별·추적하고 이 응급 차량의 진행 경로 기준으로 긴급 제어신호를 교통신호 제어기로 전송할 수 있는 체계이다. 이 시스템은 응급신호에 따라 우선 적용되는 긴급 제어신호에 의해 응급 차량의 진행이 저지되지 않도록 하여, 교통상 장애에 따른 인명과 재산의 손실을 최소화할 수 있다.