• Title/Summary/Keyword: 랭킹 기준

Search Result 13, Processing Time 0.021 seconds

Automated Development of Rank-Based Concept Hierarchical Structures using Wikipedia Links (위키피디아 링크를 이용한 랭크 기반 개념 계층구조의 자동 구축)

  • Lee, Ga-hee;Kim, Han-joon
    • The Journal of Society for e-Business Studies
    • /
    • v.20 no.4
    • /
    • pp.61-76
    • /
    • 2015
  • In general, we have utilized the hierarchical concept tree as a crucial data structure for indexing huge amount of textual data. This paper proposes a generality rank-based method that can automatically develop hierarchical concept structures with the Wikipedia data. The goal of the method is to regard each of Wikipedia articles as a concept and to generate hierarchical relationships among concepts. In order to estimate the generality of concepts, we have devised a special ranking function that mainly uses the number of hyperlinks among Wikipedia articles. The ranking function is effectively used for computing the probabilistic subsumption among concepts, which allows to generate relatively more stable hierarchical structures. Eventually, a set of concept pairs with hierarchical relationship is visualized as a DAG (directed acyclic graph). Through the empirical analysis using the concept hierarchy of Open Directory Project, we proved that the proposed method outperforms a representative baseline method and it can automatically extract concept hierarchies with high accuracy.

Implementation of an Interactive Advertising platform Using the Kinect (Kinect를 이용한 Interactive 광고 플랫폼 구현)

  • Kim, Kyung-hyun;Lee, Ki-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.89-92
    • /
    • 2013
  • South Korea's advertising market in 2012, growing at a standard 10 trillion, but most advertising is in the form of one-way communication by advertisers. In this paper, at the time they are attracting the interest of consumers, more recent placement by Facebook or Youtube propose an advertising platform using the Kinect motion-sensitive controller that can communicate with consumers. In the proposed platform, by the simple enjoyment of the game accept ads without resistance, and can deliver content more effectively than advertising indirectly passing. Had occurred in the existing Windows forms drawing problem was solved by using the XNA game engine using the Facebook API was designed so that it can be integrated with SNS.The scored elements to attract the interest of the users with the introduction of the ranking system and the user's face image to extract added to the story line, and increased immersive.

  • PDF

A Study about The Impact of Music Recommender Systems on Online Digital Music Rankings (음원 추천시스템이 온라인 디지털 음원차트에 미치는 파급효과에 대한 연구)

  • Kim, HyunMo;Kim, MinYong;Park, JaeHong
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.49-68
    • /
    • 2014
  • These days, consumers have increasingly preferred to digital real-time streamlining and downloading to listen to music because this is convenient and affordable for the consumers. Accordingly, sales of music in compact disk formats have steadily declined. In this regards, online digital music has become a new communication channel to listen musics, where digital files can be delivered over various online networks to people's computing devices. The majority of online digital music distributors has Music Recommender Systems for sales of digital music on their websites. Music Recommender Systems are parts of information filtering systems that provide the ratings or preferences that users give to music. Korean online digital music distributors have Music Recommender Systems. But those online music distributors didn't provide any rules or clear procedures that recommend music. Therefore, we raise important questions as follows: "Is Music Recommender Systems Fair?", "What is the impact of Music Recommender Systems on online music rankings and sales?" While previous studies have focused on usefulness of Music Recommender Systems, this study investigates not only fairness of Current Music Recommender Systems but also Relationship between Music Recommender Systems and online Music Charts. This study examines these issues based on Bandwagon effect, ranking effect, Slot effect theories. For our empirical analysis, we selected the most famous five online digital music distributors in terms of market shares. We found that all recommended music is exposed to the top of 'daily music charts' in online digital music distributors' websites. We collected music ranking data and recommended music data from 'daily music chart' during a one month. The result shows that online music recommender systems are not fair, since they mainly recommend particular music that supported by a specific music production company. In addition, the recommended music are always exposed to the top of music ranking charts. We also find that recommended music usually appear at the top 20 ranking charts within one or two days. Also, the most music in the top 50 or 100 ranks are the recommended music. Moreover, recommended music usually remain the ranking charts more than one month while non-recommended music often disappear at the ranking charts within two week. Our study provides an important implication to online music industry. Because music recommender systems and music ranking charts are closely related, music distributors may improperly use their recommender systems to boost the sales of music that related to their own companies. Therefore, online digital music distributor must clearly announce the rules and procedures about music recommender systems for the better music industry.