• Title/Summary/Keyword: 랭킨사이클

Search Result 134, Processing Time 0.029 seconds

Design and Configuration of 200kW Organic Rankine Cycle Turbine (200kW ORC 터빈 개발 및 구성)

  • Han, Sangjo;Seo, JongBeom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.1057-1064
    • /
    • 2014
  • Recently, there has been a growing interest in sustainable energy. One method that has been used is an organic Rankine cycle using conventional turbine technology with a low-temperature waste heat source. A 200-kW organic Rankine cycle (ORC) system was designed for a waste heat recovery application using R245fa as the working fluid. A radial turbine running at 15,000 rpm was employed to generate more than 200 kW with an expansion ratio of nine. Because an ORC turbine uses a refrigerant as the working fluid, the ideal gas law was not employed to design the turbine. In addition, the complexity of the molecular structure of R245fa made it difficult to design the turbine. Because R245fa has an Ma value of one at a low velocity for the working fluid (about 1/3 of the speed of sound in air) at about $100^{\circ}C$, it easily reaches a supersonic flow condition with a small pressure expansion. To increase the efficiency of the turbine, a dual stage radial-type turbine with a subsonic speed was suggested. This paper will describe the design procedure and performance evaluation of the ORC turbine using R245fa.

Theoretical Study on Fuel Savings of Marine Diesel Engine by Exhaust-Gas Heat-Recovery System of Combined Cycle (복합 사이클의 배기가스 열회수 시스템에 의한 선박용 디젤엔진의 연료 절약에 관한 이론적 연구)

  • Choi, Byung Chul;Kim, Young Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.171-179
    • /
    • 2013
  • The thermodynamic characteristics of a combined cycle applied with a topping cycle such as a trilateral cycle at relatively high temperatures and a bottoming cycle such as an organic Rankine cycle at relatively low temperatures have been theoretically investigated. This is an electric generation system used to recover the waste heat of the exhaust gas from a diesel engine used for the propulsion of a large ship. As a result, when the boundary temperature between the topping and the bottoming cycles increased, the system efficiencies of energy and exergy were simultaneously maximized because the total exergy destruction rate (${\sum}\dot{E}_d$) and exergy loss ($\dot{E}_{out2}$) decreased, respectively. In the case of a marine diesel engine, the waste heat recovery electric generation system can be utilized for additional propulsion power, and the propulsion efficiency was found to be improved by an average of 9.17 % according to the engine load variation, as compared to the case with only the base engine. In this case, the specific fuel consumption and specific $CO_2$ emission of the diesel engine were reduced by an average of 8.4% and 8.37%, respectively.

Fabrication and Study on the Performance Characteristics of a Scroll Expander for Organic Rankine Cycle (유기랭킨사이클용 소형 스크롤 팽창기 제작 및 성능 특성 연구)

  • Baek, Seungdong;Sung, Taehong;Lee, Minseok;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.50-56
    • /
    • 2016
  • In this work, the open-drive oil free air compressor is modified to activate an organic Rankine cycle system as an expanding machine. The shape of the modified scroll expander case is a rectangular parallelepiped and the size of the case is $0.0394m^3$. The scroll expander is operated in an ORC using R245fa as working fluid with various working conditions for the performance test. The test data points are used to calculate the parameters of the scroll expander semi-empirical simulation model. The simulation results are compared with the experimental results to validate the simulation model.

Evaluation of Performance and Economics of Organic Rankine Cycle Integrated into Combined Cycle Cogeneration Plant (복합열병합발전소에 적용된 유기랭킨사이클의 성능 및 경제성 평가)

  • Kim, In Seop;Kim, Chang Min;Kim, Tong Seop;Lee, Jong Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.41-47
    • /
    • 2017
  • This study aimed to analyze organic Rankine cycle(ORC) which recovers discarded heat from a gas turbine based combined cycle cogeneration(CC-cogen) plant in terms of both performance and economics. The nominal electric power of the CC-cogen plant is around $120MW_e$, and heat for district heating is $153MW_{th}$. The major purpose of this study is to compare various options in selecting heat source of the ORC. Three heat sources were compared. Case 1 uses the exhaust gas from the HRSG, which is purely wasted to environment in normal plant operation without ORC. Case 2 also uses the exhaust gas from the HRSG. On the other hand, in this case, the DH economizer, which is located at the end of the HRSG, does not operate. Case 3 generates power using some of the district heating water which is supplied to consumers. The estimated ORC power generation ranges between 0.3 to 2.3% of the power generation capacity of the CC-cogen plant. Overall, Case 3 is evaluated to be better than other two options in terms of system design flexibility and power generation capacity.

Study on the Basic Design of Large Scale Solar Thermal Power Plant System (대규모 태양열 발전시스템 기본설계 특성 분석)

  • Kim, Jong-Kyu;Kang, Yong-Heack;Kim, Jin-Su;Lee, Sang-Nam;Yu, Chang-Kyun;Yun, Hwan-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.576-579
    • /
    • 2006
  • This paper describes characteristics and procedure of the basic design of large scale solar thermal power plant system. The evaluation is based on the operating data of CESA-I, solar central receiver plant. In order to evaluate the solar irradiation on the receiver, it is necessary to calculate the amount of thermal energy consumption at steam turbine and storage system in the STPPS. Especially, it is need to take into account of the storage and operating time to design a plant efficiently. In addition, basic design is performed for the CESA-I using the software tool of THERMOFLEX program. Based on the results, It is at lowed to use the program to investigate detail performance of each units of the STPPS by varying the operating conditions.

  • PDF

Thermodynamic Analysis of Trilateral Cycle Applied to Exhaust Gas of Marine Diesel Engine (선박용 디젤엔진의 배기가스에 적용된 3 변 사이클의 열역학적 분석)

  • Choi, Byung-Chul;Kim, Young-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.937-944
    • /
    • 2012
  • The thermodynamic characteristics of a trilateral cycle with water as a working fluid have been theoretically investigated for an electric generation system to recover the waste heat of the exhaust gas from a diesel engine used for the propulsion of a large ship. As a result, when a heat source was given, the efficiencies of energy and exergy were maximized by the specific conditions of the pressure and mass flow rate for the working fluid at the turbine(expander) inlet. In this case, as the condensation temperature increased, the volume expansion ratio of the turbine could be reduced properly; however, the exergy loss of the heat source and exergy destruction of the condenser increased. Therefore, in order to recover the waste exergy from the topping cycle, the combined cycle with a bottoming cycle such as an organic Rankine cycle, which is utilized at relatively low temperatures, was found to be useful.

Preliminary Performance Assessment of Waste Heat Recovery System for Marine Diesel Engine using Organic Rankine Cycle (유기랭킨사이클을 이용한 선박디젤엔진용 폐열회수시스템의 예비성능평가)

  • Choi, B.C.;Kim, Y.M.;Chun, K.W.;Lee, K.W.;Ryu, G.B.;Kim, M.E.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.40-40
    • /
    • 2011
  • 특정한 엔진부하 조건에서 배기가스 및 흡입공기 대해서는 물 또는 에탄올이 R134a에 비하여 시스템 효율이 상대적으로 더 높게 나타났고, 냉각수에 대해서는 R134a가 다른 냉매에 비하여 회수되는 일률이 상대적으로 더 컸다.

  • PDF

Analysis of 1MW Closed OTEC Cycle Using Thermal Effluent and Waste Heat (발전소 온배수를 이용한 1MW급 폐쇄형 해양온도차발전 성능해석)

  • Kim, Hyeon-Ju;Lee, Ho-Saeng;Jung, Dong-Ho;Moon, Deok-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.470-476
    • /
    • 2010
  • The thermodynamic performance of closed ocean thermal energy conversion (OTEC) cycle with 1 MW gross power was evaluated to obtain the basic data for the optimal design of OTEC. The basic thermodynamic model for OTEC is Rankine cycle and the thermal effluent from power plant was used for the heat source of evaporator. The cycle performance such as efficiency, heat exchanger capacity, etc. was analyzed on the temperature variation of thermal effluent. The saturated pressure of evaporator increased with respect to the increase of thermal effluent temperature, so the cycle efficiency increased and necessary capacity of evaporator and condenser decreased under 1 MW gross power. As the thermal effluent temperature increases about $15^{\circ}C$, the cycle efficiency increased approximately 44%. So, it was revealed that thermal effluent from power plant is important heat source for OTEC plant. Also, if there is an available waste heat, it can be transferred heat to the working fluid form the evaporator through heat exchanger and cycle efficiency will be increased.

Analysis of HFC-245fa organic Rankine cycle for geothermal power generation (지열 발전을 위한 HFC-245fa 유기 랭킨 사이클의 성능해석)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Yoon, Hyung-Kee;Lee, Young-Soo;Ra, Ho-Sang
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • In this study, an ORC (Organic Rankine Cycle) is investigated for a low-temperature geothermal power generation by a simulation method. A steady-state simulation model is developed to analyze cycle's performance. The model contains a turbine, a pump, an expansion valve and heat exchangers. The turbine and pump are modelled by an isentropic efficiency. Simulations were carried out for the given heat source and sink inlet temperatures, and given flow rate that is based on the typical power plant thermal-capacitance-rate ratio. HFC-245fa is considered as a working fluid of the cycle. Simulation results, at the given secondary working fluids conditions, show that even though the power can be presented by both the evaporating temperature and the turbine inlet superheat, it depends on the evaporating temperature primarily.

  • PDF

Thermodynamic Analysis on Organic Rankine Cycle Using Exhaust Gas of the Chimney in a Resource Recovery Facility (폐기물 소각시설 굴뚝의 배기가스를 이용한 유기랭킨사이클 시스템의 열역학적 해석)

  • Kim, Sunhee;Sung, Taehong;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.27-35
    • /
    • 2017
  • The amount and quality of waste heat from a resource recovery facility were measured. The temperature of exhaust gas was $176.6^{\circ}C$ and the amount of that was 13.8 kg/s. This research designed a waste heat recovery system whose working fluid is R-245fa. It simulated three study cases as follows. In simulation of a basic ORC system, the turbine power output and thermal efficiency were respectively 96.56 kW, 14.3%. In simulation of a superheater connection, 0.09% of efficiency could be improved due to the increase of enthalpy by overheating of working fluid, but the obtained output was decreased with 16.58kW because of the decrease of working fluid mass. In simulation of a process heater connection, efficiency was increased up to 38.51%.