• 제목/요약/키워드: 랜킨패널법

검색결과 8건 처리시간 0.022초

시간영역 랜킨 패널법에 의한 선박 부가저항의 수치해석 (Numerical Analysis of Added Resistance on Ships by a Time-domain Rankine Panel Method)

  • 김경환;김용환
    • 대한조선학회논문집
    • /
    • 제47권3호
    • /
    • pp.398-409
    • /
    • 2010
  • This paper considers the numerical computation of added resistance on ships in the presence of incident waves. As a method of solution, a higher-order Rankine panel method is applied in time domain. The added resistance is evaluated by integrating the second-order pressure on the body surface. Computational results are validated by comparing with experimental data and other computational results on a hemi-sphere, a barge, Wigley hull models, and Series 60 hull, showing very fair agreements. The study is extended to the comparison between Neumann-Kelvin and double-body linearization approaches, and their differences are discussed.

단파장 영역에서의 부가저항 해석 (Analysis of Added Resistance in Short Waves)

  • 양경규;서민국;김용환
    • 대한조선학회논문집
    • /
    • 제52권4호
    • /
    • pp.338-348
    • /
    • 2015
  • In this study, the added resistance of ships in short waves is systematically studied by using two different numerical methods - Rankine panel method and Cartesian grid method – and existing asymptotic and empirical formulae. Analysis of added resistance in short waves has been preconceived as a shortcoming of numerical computation. This study aims to observe such preconception by comparing the computational results, particularly based on two representative three-dimensional methods, and with the existing formulae and experimental data. In the Rankine panel method, a near-field method based on direct pressure integration is adopted. In the Cartesian grid method, the wave-body interaction problem is considered as a multiphase problem, and volume fraction functions are defined in order to identify each phase in a Cartesian grid. The computational results of added resistance in short waves using the two methods are systematically compared with experimental data for several ship models, including S175 containership, KVLCC2 and Series 60 hulls (CB = 0.7, 0.8). The present study includes the comparison with the established asymptotic and empirical formulae in short waves.

비정상 포텐셜 유동의 패널법 해석에서 포텐셜의 2차 미분값의 수치계산 (Numerical Evaluation of 2nd Derivatives of the Potential in the Panel method for the Unsteady Potential Flow Problem)

  • 양진호;전호환
    • 한국해양공학회지
    • /
    • 제14권3호
    • /
    • pp.41-45
    • /
    • 2000
  • In solving the unsteady potential flow problem of the ship in waves with the panel method, in general one can consider the basic flow as the free stream or double body solution. For the double body solution, the body boundary condition has the 2nd derivatives of the velocity potential. Low order panel methods are known to suffer from the significant error in the 2nd derivatives computed at the body surface. This paper analyzes the numerical error in the 2nd derivatives for a 2-D cylinder and a 3-D sphere problem, and an extrapolation method to obtain the correct derivatives on the body surface is suggested.

  • PDF

Vlasov 보 모델을 이용한 컨테이너 선박의 스프링잉 응답해석 (Analysis of Linear Springing Responses of a Container Carrier by using Vlasov Beam Model)

  • 김유일;김용환
    • 대한조선학회논문집
    • /
    • 제47권3호
    • /
    • pp.306-320
    • /
    • 2010
  • Modern ultra-large container carriers can be exposed to the unprecedented springing excitation from ocean waves due to their relatively low torsional rigidity. Large deck opening on the deck of container carriers tends to cause warping distortion of hull structure under wave-induced excitation, eventually leading to the higher chance of resonance vibration between its torsional response and incoming waves. To handle this problem, a higher-order B-spline Rankine panel method and Vlasov-beam FE model was directly coupled in the time domain, and the coupled equation was solved by using an implicit iterative method. In order to capture the complicated behavior of thin-walled open section girder, a sophisticated beam-based finite element model was developed, which takes into account warping distortion and shear-on-wall effect. Then, the developed beam model was directly coupled with the time-domain Rankine panel method for hydrodynamic problem by using the fixed-point iteration method. The developed computational scheme was validated through the comparison with the frequency-domain solution on the container carrier model in linear springing regime.

선박의 파랑 중 부가저항에 대한 실험과 수치계산의 비교 연구 (Systematic Experimental and Numerical Analyses on Added Resistance in Waves)

  • 박동민;서민국;이재훈;양경규;김용환
    • 대한조선학회논문집
    • /
    • 제51권6호
    • /
    • pp.459-479
    • /
    • 2014
  • This paper considers experimental and numerical studies on added resistance in waves. As the numerical methods, three different methods, strip method, Rankine panel method and Cartesian-grid method, are applied. The computational results of vertical motion response and added resistance are compared with the experimental data of Series 60($C_B=0.8$) hull, S175 containership and KVLCC2 hull. To investigate the influence of above-still water hull form, a Rankine panel method is extended to two nonlinear methods: weakly-nonlinear and weak-scatterer approaches. As nonlinear computational models, three ships are considered: original KVLCC2 hull, 'Ax-bow' and 'Leadge-bow' hulls. Two of the three models are modified hull forms of original KVLCC2 hull, aiming the reduction of added resistance. The nonlinear computational results are compared with linear results, and the improvement of computational result is discussed. As experimental approach, a series of towing-tank experiment for ship motions and added resistance on the three models (original KVLCC2 hull, 'Ax-bow' and 'Leadge-bow') are carried out. For the original KVLCC2 hull, uncertainty analysis in the measurement of vertical motion response and added resistance is performed in three waves conditions: ${\lambda}/L=0.5$, 1.1, 2.0. From the experimental results, the effects of hull form on added resistance are discussed.

파랑 중 근접한 다중 물체의 운동응답에 대한 시간영역 해석 (Time-Domain Analysis on Motion Response of Adjacent Multiple-Bodies in Waves)

  • 김경환;김용환
    • 대한조선학회논문집
    • /
    • 제45권1호
    • /
    • pp.63-72
    • /
    • 2008
  • This study considers the motion response of multiple adjacent floating bodies in waves. As a method of solution, a three-dimensional Rankine panel method is adopted in time domain. For the validation of the developed numerical method, the motions of two adjacent Series 60 hulls and ship-barge model are estimated. The computational results are compared with other numerical and experimental analyses, showing favorable agreement.

3차원 경계요소법과 전선 유한요소 해석의 연성을 통한 전선 유탄성 해석 (Analysis on the Hydroelasticity of Whole Ship Structure by Coupling Three-dimensional BEM and FEM)

  • 김경환;방제성;김용환;김승조
    • 대한조선학회논문집
    • /
    • 제49권4호
    • /
    • pp.312-326
    • /
    • 2012
  • This paper considers a fully coupled 3D BEM-FEM analysis for the ship structural hydroelasticity problem in waves. Fluid flows and structural responses are analyzed by using a 3D Rankine panel method and a 3D finite element method, respectively. The two methods are fully coupled in the time domain using a fixed-point iteration scheme, and a relaxation scheme is applied for improve convergence. In order to validate the developed method, numerical tests are carried out for a barge model. The computed natural frequency, motion responses, and time histories of stress are compared with the results of the beam-based hydroelasticity program, WISH-FLEX, which was thoroughly validated in previous studies. This study extends to a real-ship application, particularly the springing analysis for a 6500 TEU containership. Based on this study, it is found that the present method provides reliable solutions to the ship hydroelasticity problems.

선수파 중 AFRAMAX급 유조선의 부가저항에 대한 실험과 수치계산 (Computational and Experimental Studies on Added Resistance of AFRAMAX-Class Tankers in Head Seas)

  • 오승훈;양진호;박상훈
    • 대한조선학회논문집
    • /
    • 제52권6호
    • /
    • pp.471-477
    • /
    • 2015
  • When a ship sails in a seaway, the resistance on a ship increases due to incident waves and winds. The magnitude of added resistance amounts to about 15–30% of a calm-water resistance. An accurate prediction of added resistance in waves, therefore, is essential to evaluate the performance of a ship in a real sea state and to design an optimum hull form from the viewpoint of the International Maritime Organization (IMO) regulations such as Energy Efficiency Design Index (EEDI) and Energy Efficiency Operational Indicator (EEOI). The present study considers added resistance problem of AFRAMAX-class tankers with the conventional bow and Ax-bow shapes. Added resistance due to waves is successfully calculated using 1) a three-dimensional time-domain seakeeping computations based on a Rankine panel method (three-dimensional panel) and 2) a commercial CFD program (STAR-CCM+). In the hydrodynamic computations of a three-dimensional panel method, geometric nonlinearity is accounted for in Froude-Krylov and restoring forces using simple wave corrections over exact wet hull surface of the tankers. Furthermore, a CFD program is applied by performing fully nonlinear computation without using an analytical formula for added resistance or empirical values for the viscous effect. Numerical computations are validated through four degree-of-freedom model-scale seakeeping experiments in regular head waves at the deep towing tank of Hyundai Heavy Industries.