• 제목/요약/키워드: 랜덤 샘플링

검색결과 50건 처리시간 0.024초

소음원 영상화 기술의 성능에 보간 함수가 미치는 영향 비교 (Comparison of the Effect of the Interpolation Function on the Performance of the Noise Source Imaging Technology)

  • 박규칠;윤종락
    • 한국정보통신학회논문지
    • /
    • 제20권2호
    • /
    • pp.268-274
    • /
    • 2016
  • 3차원 공간에 존재하는 임의의 소음원의 위치를 찾기 위해서는 적어도 4개 이상의 마이크로폰이 필요하다. 1개의 기준 마이크로폰과 나머지 3개의 마이크로폰과의 시간차 3개를 공간적으로 합성하는 것이다. 본 논문에서는 3차원 공간에 분포하는 4개의 마이크로폰을 이용하여 2차원 평면에 소음원의 영상화를 시도하였으며 그 성능을 평가하였다. 소음원의 위치를 정확하게 나타내기 위한 분해능은 기준 마이크로폰과 나머지 마이크로폰과의 거리 또는 샘플링 주파수에 의해 반비례하여 결정된다. 4개의 마이크로폰의 위치가 고정되어 있고, 샘플링 주파수가 낮을 경우 발생하는 분해능을 높이기 위해 업 샘플링 기법과 보간 함수를 적용하였다. 신호의 보간에 사용한 기법으로는 디지털 신호의 고분해능 성분을 얻기 위해 주로 사용되는 제로 페이딩, 0차 홀드, 1차 홀드, 스프라인 함수, 랜덤 신호 페이딩의 다섯 가지이며, 각각의 보간 함수에 업 샘플링 속도를 2배, 4배, 8배, 16배로 높여가며 소음원의 위치를 추정하였다. 그 결과, 업 샘플링 속도가 높아짐에 따라 전체적으로 소음원의 위치를 보다 정확하게 추정하는 것이 가능하였으나 1차 홀드와 스프라인 함수의 경우 추정 성능이 다른 방법에 비해 다소 떨어짐을 알 수 있었다.

Random Forest 기법을 이용한 산사태 취약성 평가 시 훈련 데이터 선택이 결과 정확도에 미치는 영향 (Study on the Effect of Training Data Sampling Strategy on the Accuracy of the Landslide Susceptibility Analysis Using Random Forest Method)

  • 강경희;박혁진
    • 자원환경지질
    • /
    • 제52권2호
    • /
    • pp.199-212
    • /
    • 2019
  • 머신러닝 기법을 활용한 분석에서 훈련 데이터의 샘플링 전략은 예측 정확도 뿐 만 아니라 일반화 능력에도 많은 영향을 미친다. 특히, 산사태 취약성 분석의 경우, 산사태 발생부에 대한 정보에 비해 산사태 미발생부에 대한 정보가 과도하게 많은 데이터 불균형 현상이 발생하며, 이에 따라 분석 모델의 훈련 데이터 설계 시 데이터 샘플링 과정이 필수적이다. 그러나 기존의 연구들은 대부분 산사태 미발생부 선택 시 발생부 데이터와 1:1의 비율을 갖도록 무작위로 선택하는 방법을 적용하였을 뿐, 특정한 선택 기준에 따라 분석을 수행하지 않았다. 따라서 본 연구에서는 훈련 데이터의 샘플링 전략이 모델의 예측 성능에 미치는 결과를 확인하기 위하여 산사태 발생부와 미발생부의 샘플링 전략기준에 따라 서로 다른 6개의 시나리오를 만들어 Random Forest 모델의 훈련에 사용하였다. 또한 Random Forest의 결과 중 하나인 변수 중요도를 각 산사태 유발인자들에 가중치로 곱하여 줌으로써 산사태 취약지수 값을 산정하였으며, 취약지수 값을 이용해 산사태 취약성도를 제작하고 각 결과 지도의 정확도를 비교 분석하였다. 분석 결과, 훈련데이터의 샘플링 방법에 상관없이 두 지역의 산사태 취약성 분석 결과는 모두 70~80%의 정확도를 보였다. 이를 통해 Random Forest 기법의 산사태 취약성 분석기법으로서의 적용 가능성을 확인하였으며, Random Forest 모델이 제공하는 입력변수의 중요도를 산사태 유발인자 가중치로 활용할 수 있음을 확인하였다. 또한 훈련 시나리오 간의 정확도를 비교한 결과, 특정한 기준에 의해 훈련 데이터를 설계하는 것이 기존의 랜덤 선택 방법보다 높은 예측 정확도를 기대할 수 있음을 확인하였다.

Monte-Carlo 방법에 의한 소나배열 소자의 허용오차 규정 (Decision of Error Tolerance in Sonar Array by the Monte-Carlo Method)

  • 김형동;이용범;이준영
    • 한국음향학회지
    • /
    • 제21권3호
    • /
    • pp.221-229
    • /
    • 2002
  • 본 논문에서는 Monte-Carlo 방법으로 빔패턴 오차의 허용범위를 만족하는 개별소자의 허용오차를 규정하였다. 일반적으로 사용되는 통계적인 방법은 불규칙한 특성을 갖는 랜덤오차를 정규분포를 갖는 랜덤 변수로 모델링을 하여 개별소자의 오차범위를 규정하는데, 이러한 방법은 해석하고자 하는 배열소자의 개수증가에 따라 계산량이 지수승으로 늘어나게 되어 많은 소자배열에는 적합하지 않게 된다. 이러한 단점을 보완하기 위해서 이 논문에서는 Monte-Carlo 방법을 사용하여 배열소자의 증가에 따른 계산량의 증가를 줄이는 새로운 알고리즘을 제안하였다. 그리고 이렇게 규정된 오차의 범위를 간단한 모의실험을 통해서 검증하였다.

산불 피해강도의 공간 자기상관성 검증에 관한 연구 (Testing Spatial Autocorrelation of Burn Severity)

  • 이상우;원명수;이현주
    • 한국산림과학회지
    • /
    • 제101권2호
    • /
    • pp.203-212
    • /
    • 2012
  • 본 연구는 2011년 산불피해지인 울진과 영덕지역 산불피해지를 대상으로 산불 피해강도의 공간 자기상관성 검증에 목표를 두고 수행되었다. 자기상관성은 산불 피해지의 현장조사, 피해지 모니터링 등 샘플링의 적정 이격거리 설정과 자료의 독립성 검증 측면에서 매우 중요하다. 산불 피해강도 측정을 위해 SPOT영상을 이용하여 NDVI 값을 계산하였으며, 5000개의 지점들을 GIS상에서 랜덤으로 대상지에 분산 배치시키고 지점별 NDVI 값을 샘플링하였다. 공간 자기상관도는 Moran's I값과 Variogram 모형을 이용하여 분석하였다. 분석결과 Moran's I 값이 울진의 경우 0.7745, 영덕의 경우 0.7968로 나타나 강한 공간 자기상관이 존재하는 것으로 분석되었다. Variogram 및 Lag class 별 Moran's I값 변화에 기초하여 도출된 적정한 샘플링 이격거리는 울진의 경우 566-2,151 m, 영덕의 경우 272-402 m 범위에서 상관도의 정도에 따라 다른 이격거리를 적용하여야 할 것으로 분석되었다. 이격거리를 획일적으로 적용하는 것 보다 Anisotropic 분석결과를 기초로 하여 상관도가 높은 지역에서는 크게, 반면 낮은 지역은 상대적으로 작게 유동적으로 적용하여야 효과적일 것으로 판단된다.

호모그래피 정확도 향상을 위한 Constraint Satisfaction Problem(CSP) 기반의 RANSAC 알고리즘 (CSP driven RANSAC Algorithm for improving the accuracy of Homography)

  • 장철희;이기성;조근식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(B)
    • /
    • pp.318-320
    • /
    • 2012
  • 증강현실 콘텐츠를 2D 이미지기반으로 저작할 때, 작성된 증강현실 콘텐츠를 카메라 시점과 일치시켜 합성하기 위해 호모그래피를 이용한다. 이때 증강현실 콘텐츠를 이질감 없이 합성하기위해 정확한 호모그래피 행렬을 추정해야 한다. 그러나 호모그래피 행렬 추정 시 사용되는 특징점들이 선형을 이루거나, 특정 영역에 군집을 이루는 경우 정확한 호모그래피 행렬을 추정하지 못하는 문제가 발생한다. 본 논문에서는 이러한 문제를 해결하기 위해 선형제약, 거리제약을 적용한 CSP 기반의 RANSAC 알고리즘을 제안한다. 실험결과 호모그래피 행렬 추정 시 CSP를 적용한 RANSAC 알고리즘이 기존의 랜덤샘플링 또는 삼각형의 넓이를 이용한 샘플링을 적용한 RANSAC 알고리즘보다 정확도가 향상됨을 보였다.

그래프 트랜스포머 기반 농가 사과 품질 이미지의 그래프 표현 학습 연구 (A Study about Learning Graph Representation on Farmhouse Apple Quality Images with Graph Transformer)

  • 배지훈;이주환;유광현;권경주;김진영
    • 스마트미디어저널
    • /
    • 제12권1호
    • /
    • pp.9-16
    • /
    • 2023
  • 최근 농가의 사과 품질 선별 작업에서 인적자원의 한계를 극복하기 위해 합성곱 신경망(CNN) 기반 시스템이 개발되고 있다. 그러나 합성곱 신경망은 동일한 크기의 이미지만을 입력받기 때문에 샘플링 등의 전처리 과정이 요구될 수 있으며, 과도 샘플링의 경우 화질 저하, 블러링 등 원본 이미지의 정보손실 문제가 발생한다. 본 논문에서는 위 문제를 최소화하기 위하여, 원본 이미지의 패치 기반 그래프를 생성하고 그래프 트랜스포머 모델의 랜덤워크 기반 위치 인코딩 방법을 제안한다. 위 방법은 랜덤워크 알고리즘 기반 위치정보가 없는 패치들의 위치 임베딩 정보를 지속적으로 학습하고, 기존 그래프 트랜스포머의 자가 주의집중 기법을 통해 유익한 노드정보들을 집계함으로써 최적의 그래프 구조를 찾는다. 따라서 무작위 노드 순서의 새로운 그래프 구조와 이미지의 객체 위치에 따른 임의의 그래프 구조에서도 강건한 성질을 가지며, 좋은 성능을 보여준다. 5가지 사과 품질 데이터셋으로 실험하였을 때, 다른 GNN 모델보다 최소 1.3%에서 최대 4.7%의 학습 정확도가 높았으며, ResNet18 모델의 23.52M보다 약 15% 적은 3.59M의 파라미터 수를 보유하여 연산량 절감에 따른 빠른 추론 속도를 보이며 그 효과를 증명한다.

하천 내 지표 피복 분류를 위한 Sentinel-2 영상 기반 랜덤 포레스트 기법의 적용성 연구 - 내성천을 사례로 - (Application study of random forest method based on Sentinel-2 imagery for surface cover classification in rivers - A case of Naeseong Stream -)

  • 안성기;이찬주;김용민;최훈
    • 한국수자원학회논문집
    • /
    • 제57권5호
    • /
    • pp.321-332
    • /
    • 2024
  • 하천 공간의 지표 피복 현황 파악은 하천 관리 및 홍수 재해 예방에 필수적이다. 기존 조사 방법은 전문가에 의한 식생 판독을 통한 식생도 작도 방법이나 식생지수를 활용하는 방법이 활용되어 왔으나, 역동적으로 변화하는 하천 환경을 반영하기에 한계가 있다. 이러한 배경에서 본 연구는 내성천을 대상으로 위성영상 자료를 활용한 랜덤 포레스트 기법을 활용하여 다수 연도의 하천 내 식생 분포를 파악하고, 적용성을 검토하였다. 원격탐사 자료 Sentinel-2 위성 영상을 사용하였으며, 지상 참값(ground truth)은 2016년 내성천 지표 피복 자료를 활용하였다. 랜덤 포레스트 머신러닝 알고리듬을 활용하여 미리 선정된 10개 샘플링 영역으로부터 분류군 별로 1,000개의 표본을 추출하여 훈련 및 검증하였으며, 민감도 분석, 연도별 지표 피복 분석, 정확도 분석을 통하여 적용성을 평가하였다. 연구 결과, 검증 자료 기반의 정확도는 85.1%로 나타났다. 트리 수, 샘플 수, 하천 구역에 대한 민감도 분석 결과, 각각 30개, 800개, 하류에서 효율성이 높았다. 지표 분류 유형은 6개 항목에서 높은 정확도를 보여 지표 피복 분류 결과가 실제 하천 환경을 잘 반영하는 것으로 나타났다. 정확도 분석 결과, 전체 샘플 중 14.9%의 경계오류와 내부오류를 확인하였으며, 지표 피복 분류 중 산발 식생과 초본 식생을 제외한 항목들은 높은 정확도를 보였다. 본 연구에서는 단일 하천을 대상으로 적용하였지만, 보다 정확하고 많은 자료의 구축을 위해서는 다수의 하천에 대해 지표 피복 분류 기법의 적용이 요구된다.

비동기 다중 디지탈 통신에 대한 해석 (Asynchronous Multiplex Digital Communication)

  • 최세곤
    • 대한전자공학회논문지
    • /
    • 제16권1호
    • /
    • pp.1-8
    • /
    • 1979
  • 비동기 디지탈 변조 시스템은 일반적으로 아날로그(analog) 신호를 시간축상에 샘플링(sampling)하지 않고 진폭축상에서 양자화하기 때문에 그 출력펄스는 보통 랜덤(random)하여 재래의 동기식 시분할 다중방식은 적용하지 못한다. 아날로그 신호를 터지탈 코오드화하게 되면 전송회로의 비직선성이나 중계기의 잡음 누적 등의 문제점이 어느 정도 해소되므로 여기에 Pierce의 다중통신 방식(1)을 적용하기로 하고 이를 실현시키는데 알맞는 디지탈 변조방식에 대해서 고찰하였다.

  • PDF

비디오 캡셔닝을 적용한 수어 번역 및 행동 인식을 적용한 수어 인식 (Sign language translation using video captioning and sign language recognition using action recognition)

  • 김기덕;이근후
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.317-319
    • /
    • 2024
  • 본 논문에서는 비디오 캡셔닝 알고리즘을 적용한 수어 번역 및 행동 인식 알고리즘을 적용한 수어 인식 알고리즘을 제안한다. 본 논문에 사용된 비디오 캡셔닝 알고리즘으로 40개의 연속된 입력 데이터 프레임을 CNN 네트워크를 통해 임베딩 하고 트랜스포머의 입력으로 하여 문장을 출력하였다. 행동 인식 알고리즘은 랜덤 샘플링을 하여 한 영상에 40개의 인덱스에서 40개의 연속된 데이터에 CNN 네트워크를 통해 임베딩하고 GRU, 트랜스포머를 결합한 RNN 모델을 통해 인식 결과를 출력하였다. 수어 번역에서 BLEU-4의 경우 7.85, CIDEr는 53.12를 얻었고 수어 인식으로 96.26%의 인식 정확도를 얻었다.

  • PDF

희소 투영행렬 획득을 위한 RSR 개선 방법론 (An Improved RSR Method to Obtain the Sparse Projection Matrix)

  • 안정호
    • 디지털콘텐츠학회 논문지
    • /
    • 제16권4호
    • /
    • pp.605-613
    • /
    • 2015
  • 본 논문은 패턴인식에서 자주 사용되는 투영행렬을 희소화하는 문제를 다룬다. 최근 임베디드 시스템이 널리 사용됨에 따라 탑재되는 프로그램의 용량이 제한받는 경우가 빈번히 발생한다. 개발된 프로그램은 상수 데이터를 포함하는 경우가 많다. 예를 들어, 얼굴인식과 같은 패턴인식 프로그램의 경우 고차원 벡터를 저차원 벡터로 차원을 축소하는 투영행렬을 사용하는 경우가 많다. 인식성능 향상을 위해 영상으로부터 매우 높은 차원의 고차원 특징벡터를 추출하는 경우 투영행렬의 사이즈는 매우 크다. 최근 라소 회귀분석 방법을 이용한 RSR(rotated sparse regression) 방법론[1]이 제안되었다. 이 방법론은 여러 실험을 통해 희소행렬을 구하는 가장 우수한 알고리즘 중 하나로 평가받고 있다. 우리는 본 논문에서 RSR을 개선할 수 있는 세 가지 방법론을 제안한다. 즉, 학습데이터에서 이상치를 제거하여 일반화 성능을 높이는 방법, 학습데이터를 랜덤 샘플링하여 희소율을 높이는 방법, RSR의 목적함수에 엘라스틱 넷 회귀분석의 패널티 항을 사용한 E-RSR(elastic net-RSR) 방법을 제안한다. 우리는 실험을 통해 제안한 방법론이 인식률을 희생하지 않으며 희소율을 크게 증가시킴으로써 기존 RSR 방법론을 개선할 수 있음을 보였다.