Journal of the Korea Society of Computer and Information
/
v.25
no.11
/
pp.41-50
/
2020
Sentimental analysis begins with the search for words that determine the sentimentality inherent in data. Managers can understand market sentimentality by analyzing a number of relevant sentiment words which consumers usually tend to use. In this study, we propose exploring performance of feature selection methods embedded with Particle Swarm Optimization Multi Objectives Evolutionary Algorithms. The performance of the feature selection methods was benchmarked with machine learning classifiers such as Decision Tree, Naive Bayesian Network, Support Vector Machine, Random Forest, Bagging, Random Subspace, and Rotation Forest. Our empirical results of opinion mining revealed that the number of features was significantly reduced and the performance was not hurt. In specific, the Support Vector Machine showed the highest accuracy. Random subspace produced the best AUC results.
This study aims to explore variables using machine learning and provide analysis techniques suitable for predicting pharmacy sales whether government statistical indicators built to create an industrial ecosystem based on data, network, and artificial intelligence affect pharmacy sales. Therefore, this study explored predictive variables and performance through machine learning techniques such as Random Forest, XGBoost, LightGBM, and CatBoost using analysis data from January 2016 to December 2021 for 28 government statistical indicators and pharmacies in the retail sector. As a result of the analysis, economic sentiment index, economic accompanying index circulation change, and consumer sentiment index, which are economic indicators, were found to be important variables affecting pharmacy sales. As a result of examining the indicators MAE, MSE, and RMSE for regression performance, random forests showed the best performance than XGBoost, LightGBM, and CatBoost. Therefore, this study presented variables and optimal machine learning techniques that affect pharmacy sales based on machine learning results, and proposed several implications and follow-up studies.
본 연구에서는 실수형 염색체들로 구성된 개체에 대해 감수분열을 적용하여 개체를 만들고, 이 생식체들의 랜덤한 선택과 교배에 의해 세대가 진화함에 따라 탐색을 수행하는 감수분열 유전알고리즘을 이용하여 퍼지모델의 최적 구조와 파라미터를 탐색하고 Gradient Descent 알고리즘으로 파라미터를 정밀 조정하는 방안을 제안한다. 제안된 방안을 적용하여 Box-Jenkins의 가스로 데이터에 대한 퍼지모델을 구성하고 그 적용 가능성을 보인다.
Proceedings of the Korea Information Processing Society Conference
/
2001.10a
/
pp.689-692
/
2001
본 논문에서는 주어진 제약조건을 만족하며 저비용 고효율의 목적물 합성을 위하여 어느 부분을 하드웨어로 또는 소프트웨어로 구현할 것인지를 결정하는 분할 알고리즘을 제안한다. 논문[6]에서 제시한 시뮬레이티드 어닐링의 후보자 선택은 랜덤한 방식에 의해 노드의 이동이 이루어지기 때문에 중복된 후보자의 선택으로 인하여 시간이 오래 걸리는 단점이 있다. 이러한 단점을 극복하기 위해, 본 논문에서는 비용 함수를 구성하는 변수들 중에서 시스템 실행시간과 구현 비용에 영향을 미칠 수 있는 부분들을 고려해 후보자를 선택하도록 하여 최적해 탐색을 위한 분할 알고리즘의 실행 시간을 단축시켰다. 실험 결과는 대상 노드가 많아질수록 기존의 방법보다 빠른 시간에 최적의 해를 탐색한다.
Journal of the Korean Institute of Intelligent Systems
/
v.10
no.6
/
pp.542-547
/
2000
진화프로그래밍(Evolutionary Programming : EP)은 최적화 문제에 있어서 매우 유용한 기법으로 자연선택의 원리를 모방한 탐색알고리즘이다. EP는 기존의 최적화 알고리즘에 비하여 여러해를 동시에 탐색하는 전역탐색(global search)방법이므로 국부수렴(local convergence)의 가능성이 줄어들고, 최적화 파라메터 영역의 연속성과 미분치의 존재성과 같은 조건이 필요 없는 장점을 갖는다. 이러한 장점에도 불구하고, EP의 탐색영역이 초기조건 및 최적화 파라메터들의 랜덤 생성 그리고 최적화에 필요한 전략적 파라메터들에 의하여 탐색 영역이 결정되고, 수렴성이 느린 단점을 갖는다. 이러한 문제를 해결하기 위하여, 본 연구에서는 빠른 수렴성과 다양성을 갖는 개선된 EP을 제안하고, 제안된 방향성 벡터를 갖는 개선된 EP를 함수 최적화 문제에 적용하여 그 성능의 유용성을 보이고자 한다.
At an early stage of genomic investigations, a small sample of microarrays is used in gene expression experiments to identify small subsets of candidate genes for a further accurate investigation. Unlike the statistical analysis methods for a large sample of microarrays, an appropriate statistical method for identifying small subsets is a randomization test that provides exact P values. These exact P values from a randomization test for a small sample of microarrays are discrete. The possible existence of differentially expressed genes in the sample of a full set of genes can be tested for the null hypothesis of a uniform distribution. Subsets of smaller P values are of prime interest for a further accurate investigation and identifying these outlier cells from a multinomial distribution of P values is possible by M test of Fuchs et al. (1980). Above all, the genome-wide gene expressions in microarrays are correlated, but the majority of statistical analysis methods in the microarray analysis are based on an independence assumption of genes and ignore the possibly correlated expression levels. We investigated with simulation studies the effect that correlated gene expression levels could have on the randomization test results and M test results, and found that the effects are often not ignorable.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2013.05a
/
pp.151-154
/
2013
We typically have a variety of equipment that can detect and track targets, and detect and track target quickly and accurately through the exchange of the information between each piece of equipment. These equipments have similar detection area(FOV), but some are different due to the limits of the resolution of the equipments. In this paper, we studied the method of reducing time to search and detect target, and also did the method of tracking automatically it.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.350-350
/
2023
SCE-UA(Shuffled Complex Evolution-University Arizona)기법은 최적해 탐색 알고리즘으로 개념적 강우유출 모형(conceptual rainfall runoff model)의 보정을 위한 도구로 개발되었다. SCE-UA기법은 메타휴리스틱 방법의 일종으로 최적해를 구하기 위하여 여러번 목적함수 값을 계산해야 한다. 이 때 목적함수 계산 횟수와 해의 수렴과 관련된 제어 매개변수가 존재하며, 사용자가 적절한 값을 입력해주어야 한다. 이 연구에서는 SCE-UA와 관련된 제어 매개변수의 기능에 대해서 검토하였다. 그리고 집합체 수의 변화에 따라서 검사함수인 Ackley function의 전역해를 얼마나 잘 탐색하는지 검토하였다. 검토 결과 랜덤 시드에 따라서 전역해 탐색 결과가 달라졌으며, 집합체의 수가 증가할수록 목적함수 계산 횟수는 증가하는 경향을 나타내었다. 검사함수의 차원(결정 변수의 수)이 증가하면 전역해의 탐색률이 감소하며, 집합체의 수가 많아지면 전역해를 더 잘 찾는 경향이 나타나지만, 목적함수 계산 횟수는 더 많아지게 되는 것을 확인할 수 있었다. 2차원인 경우 집합체의 수가 7개 이상일 때 탐색 성공률은 90% 이상이 되었지만, 10차원인 경우 집합체의 수가 시험 최대값인 20개일 때의 전역해 탐색률은 37%에 그쳤다. 이 연구의 결과는 SCE-UA 기법의 설정 매개변수에 관한 기본 개념을 이해하고, 사용자가 설정 매개변수 선정 시에 활용할 수 있을 것이다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2005.04a
/
pp.198-201
/
2005
본 논문에서는 다수개의 로봇을 효율적으로 제어하기 위한 면적기반 Q-learning에 대해 논한다. 각 로봇은 $60^{\circ}$의 각을 이루도록 배치된 6개 센서를 가지고 있고 이를 통해 자신과 주변환경 사이의 거리를 센싱한다. 다음으로, 이 획득된 거리 데이터들로부터 6방향의 면적을 계산하여, 이후의 진행에 있어 보다 넓은 행동 반경을 보장해주는 영역으로 이동한다. 이 이동을 어떤 상태에서 다른 상태로의 전이로 간주, 이동 후 다시 6방향의 면적을 계산하여 이전 상태에서 현재 상태로의 행동에 대한 Q-Value를 업데이트 한다. 본 논문의 실험에서는 5개의 로봇을 이용해 장애물 사이에 숨어있는 물체를 찾아내는 것을 시도하였고, 3개의 서로 다른 제어 방법 - 랜덤 탐색, 면적 기반 탐색, 면적 기반 Q-learning 탐색 - 에 따른 결과를 나타내었다.
Proceedings of the Korea Society for Simulation Conference
/
1997.04a
/
pp.75-80
/
1997
본 연구에서는 대용량의 데이터를 고속으로 입출력할 수 있는 데이터 저장 시스템 이 가져야할 요구사항을 분석하고, 그것을 만족하는 시스템을 설계하였다. 본 논문에서는 우선 고속 대용량, 랜덤 억세스의 조건을 만족시키기 위해 여러 대의 하드 디스크를 병렬로 연결하여 입력되는 데이터들을 나누어 저장하도록 하였다. 그러나 하드 디스크의 성능은 디 스크 아암의 탐색동작에 의해 크게 영향을 받으므로 실시간 요구 조건을 만족시키기 위해선 단순히 디스크의 수를 늘이는 것 외에 디스크 아암의 탐색 동작을 효율적으로 제어할 수 있 는 방법이 필요하다. 그래서 본 논문에서 설계된 시스템에서는 시스템을 MCU(Master Control Unit), DDU(Data Distribution Unit), SCU(Slave Control Unit), DSU(Data Storage Unit)의 4부분으로 나누고, 각 디스크의 디스크 아암 탐색 동작을 독립된 SCU에서 제어하 도록 하였다. 설계된 내용이 주어진 요구사항들을 만족하는 것을 확인하기 위해, 본 논문에 서는 이산사건 시스템을 기술하는 수학적인 언어인 DEVS 형식론을 이용하여 제안된 시스 템을 기술하고 시뮬레이션하였다. 그리고 시뮬레이션되는 과정에서 생산되는 사건들의 궤적 을 분석하였다. 분석결과 제안된 시스템은 앞에서 제시한 여러 요구사항들을 잘 수용함을 보았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.