• Title/Summary/Keyword: 라틴하이퍼큐브샘플링

Search Result 23, Processing Time 0.023 seconds

Durability Prediction for Concrete Structures Exposed to Chloride Attack Using a Bayesian Approach (베이지안 기법을 이용한 염해 콘크리트구조물의 내구성 예측)

  • Jung, Hyun-Jun;Zi, Goang-Seup;Kong, Jung-Sik;Kang, Jin-Gu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.77-88
    • /
    • 2008
  • This paper provides a new approach for predicting the corrosion resistivity of reinforced concrete structures exposed to chloride attack. In this method, the prediction can be updated successively by a Bayesian theory when additional data are available. The stochastic properties of model parameters are explicitly taken into account into the model. To simplify the procedure of the model, the probability of the durability limit is determined from the samples obtained from the Latin hypercube sampling technique. The new method may be very useful in designing important concrete structures and help to predict the remaining service life of existing concrete structures which have been monitored.

Shape Optimization of a Rotating Cooling Channel with Pin-Fins (핀휜이 부착된 회전하는 냉각유로의 최적설계)

  • Moon, Mi-Ae;Husain, Afzal;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.703-714
    • /
    • 2010
  • This paper describes the design optimization of a rotating rectangular channel with staggered arrays of pin-fins by Kriging metamodeling technique. Two non-dimensional variables, the ratio of the height to the diameter of the pin-fins and the ratio of the spacing between the pin-fins to the diameter of the pin-fins are chosen as the design variables. The objective function that is a linear combination of heat transfer and friction loss related terms with a weighting factor is selected for the optimization. To construct the Kriging model, objective function values at 20 training points generated by Latin hypercube sampling are evaluated by a three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis method with the SST turbulence model. The Kriging model predicts the objective function value that agrees well with the value calculated by the RANS analysis at the optimum point. The objective function is reduced by 11% by the optimization of the channel.

High-Efficiency Design of a Ventilation Axial-Flow Fan by Using Weighted Average Surrogate Models (가중평균대리모델을 이용한 환기용 축류송풍기의 고효율 최적설계)

  • Kim, Jae-Woo;Kim, Jin-Hyuk;Lee, Chan;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.763-771
    • /
    • 2011
  • An optimization procedure for the design of a ventilation axial-flow fan is presented in this paper. Flow analyses of the preliminary fan are performed by solving three-dimensional Reynolds-averaged Navier-Stokes equations via a finite-volume solver with the shear-stress transport turbulence model as a turbulence closure. Three variables, the hub-to-tip ratio and the stagger angles at the mid and tip spans, are selected for the optimization. The Latin-hypercube sampling method as a design-of-experiments technique is used to generate twenty-five design points within the design space. and the weighted average surrogate models, WTA1, WTA2, and WTA3, are applied for find optimal designs. The results show that the efficiency is considerably enhanced.