• Title/Summary/Keyword: 라텍스 콘크리트

Search Result 107, Processing Time 0.033 seconds

Permeability and Freeze-Thaw Resistance of Latex Modified Concrete (라텍스 개질 콘크리트의 투수성 및 동결융해 저항 특성)

  • 김기헌;이종명;홍창우;윤경구
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.484-490
    • /
    • 2001
  • This study focused on the investigation of durability of latex modified concrete in the points of chloride ion permeability and freeze-thaw resistance as latex content variated such as 5%, 10%, 15% and 20%. When latex was mixed in concrete and cured, the concrete consisted of hydrated cement and aggregate interconnected by a film of latex particles. An increasing the amount of latex produced concrete with increased flexural strength, but with slightly lower compressive strength. The increase in flexural strength might be attributed to the latex films between the hydrated cement and aggregates, and the decrease in compressive strength to the flexibility of the latex component named by Butadiene. The rapid chloride permeability test was used to evaluate the relative permeability of latex-modified concretes and conventional concretes. The results showed that the permeability of latex-modified concretes was considerably lower than conventional concretes tested, which might be due to the latex filled in voids and interconnections of hydrated cement and aggregates by a film of latex particles. The freeze-thaw resistance of LMC was quite good comparing to conventional concrete. Air entraining agent has been used in conventional concrete to improve the freeze/thaw resistance, but latex modified concrete does not need additional air entraining agent for freeze-thaw resistance provided adequate cure occurs.

Bond Strength Properties of Latex Modified Concrete (라텍스 개질 콘크리트의 부착강도 특성)

  • 윤경구;이주형;최상릉;김기헌
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.507-515
    • /
    • 2001
  • Significant improvements in bond strength between new and existing concrete can be achieved through the modification of the new concrete by latex. This study focuses on the investigation of bond strength of latex modified concrete. Pull-out bond test and uniaxial direct tensile bond test are adopted for evaluating the adhesion characteristics of latex modified concrete to conventional concrete substrate. The main experimental variables are test methods, latex-cement ratio, surface preparations and moisture levels. The results are as follows; The increase of latex-cement ratio substantially improves the adhesion between latex modified concrete and substrate. The effects of surface preparation at substrate into the bonding of latex modified concrete are quite different according to the conditions of surfaces. Thus, an adequate surface preparations are essential for good bond strength. Because the moisture level of the substrate may be critical to achieving bond, optimum moisture condition for a conventional concrete has evaluated in this study. The saturated condition of surface is the most appropriate moisture level among the considered, followed by dry condition and wet condition.

Strength Development and Permeability of Latex-Modified Concrete with Rapid-Setting Cement (초속경시멘트를 이용한 라텍스개질 콘크리트의 강도 및 투수특성)

  • 윤경구;홍창우;이주형;최상릉
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.299-306
    • /
    • 2002
  • The purpose of this research was to develop a rapid setting cement latex modified concrete (RSLMC) for bridge deck repairing and overlaying. The main experimental variables were latex contents, antifoamer contents and water-cement ratioes. The workability, strength development and permeability were measured as responses. The results showed that latex content increased the slump and reduced the unit water required for same workability. The air contents were measured as 8.0∼9.0% and 2.0∼3.0% without antifoamer and with 1.6∼3.2% of antifoamer, respectively. This resulted in the increment of compressive strength development by 10∼20 %. The flexural strength of RSLMC increased greatly as the latex content increased, but not in compressive strength. The compressive strength and flexural strength developed enough for opening the overlayed RSLMC to the traffic after 3 hours of RSLMC placement. The permeability of RSLMC was evaluated as negligible due to its very low charge passed. Thus, RSLMC could be used at repairing or overlaying the concrete bridge deck at fast-track job sites.

Strength Development Properties of Latex Modified Concrete For New Concrete Bridge Deck Overlay (신설 콘크리트 교면 덧씌우기를 위한 라텍스 개질 콘크리트의 강도발현 특성)

  • Yun, Kyong-Ku;Kim, Ki-Heoun;Lee, Joo-Hyung;Hong, Chang-Woo;Kim, Dong-Ho
    • International Journal of Highway Engineering
    • /
    • v.3 no.3 s.9
    • /
    • pp.135-146
    • /
    • 2001
  • This study focused on the investigation of compressive and flexural strengths development, and bond strength of latex modified concrete in order to validate the feasibility of application into concrete bridge deck overlay. Pull-out bond test was used for evaluating the bond strength of latex modified concrete to substrate. The main experimental variables were latex-cement ratio, surface preparation and moisture levels. The compressive strength of latex modified concrete decreased slightly and the flexural strength increased as the latex content increased from 5% to 20%. This might be due to the flexibility latex filled in voids and interconnections of hydrated cement and aggregates by a film of latex particles, respectively. In general, increasing the amount of latex will produce concrete with increased tensile and flexural strength and lower modulus of elasticity. Significant improvements in bond strength between new and existing concrete were achieved through the modification of the new concrete bridge deck overlay by latex polymers. The effect of surface preparation on bond of latex modified concrete to conventional concrete were significant at the conditions by sand paper and wire brush. A better bond could be achieved by rough surface rather than smooth. The saturated condition of surface is the most appropriate moisture level among the considered followed by dry condition and wet condition.

  • PDF

Properties of Latex Modified Concrete by Binder Content and Effect on Chloride Ion Diffusion (라텍스 개질 콘크리트(LMC)의 결합재량에 따른 배합 및 염화물 이온 확산 특성)

  • Park, Sung-Gi;Won, Jong-Pil;Park, Chan-Gi;Lee, Sang-Woo;Sung, Sang-Kyoung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.949-952
    • /
    • 2008
  • The latex modified concrete(LMC) was adds latex in the plain concrete as the latex has increase the durability of concrete. But it is added in LMC manufacture, which is a high price compares with different material and there is a weak point where the construction expense is very high. So, this study are decided mix proportion from the scope where the security strong point of LMC is possible and reduced the material expense by control the latex contents. and these mix proportions are estimated the chloride ion diffusion. The results of study appear that it can reduced the latex content until the $5{\sim}10$% of cements, and these mixtures are very low chloride ion diffusion.

  • PDF

Estimation of Air Void System and Permeability of Latex-Modified Concretes by Image Analysis Method (화상분석법을 이용한 라텍스개질 콘크리트의 공극 구조와 투수성의 상관성 분석)

  • Jeong Won-Kyong;Yun Kyong-Ku;Hong Seung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.695-702
    • /
    • 2005
  • It is known that latex-modified concretes were increased their durability and permeability by added latex. The purpose of this study was to analysis the air void systems in latex-modified concretes using a reasonable and objective image analysis method with main experimental variables such as water-cement ratios, latex contents(0%, 15%) and cement types(ordinary portland cement, high-early strength cement and very-early strength cement). The results are analyzed spacing factor, air volume after hardened, air distribution and structure. Also, air void systems and permeability of latex-modified concretes were compared with correlation. The results are as follows; The same w/c ratio LMC showed better air entraining effect than OPC with AE water reducer. The VES-LMC showed that the number of entrained air below $100{\mu}m$ increased more than four times. In the HES-LMC, micro entraining air having range from 50 to $500{\mu}m$ increased above 7 times without antifoamer. Though spacing factor was measured low, latex-modified concretes were showed that permeability was good. It is considered that air void system does not have an effect on the property of latex-modified concretes but latex film is more influenced in the their durability.

A Study on the Properties of Latex Modified Concrete using Recycled Coarse Aggregate (재생굵은골재를 이용한 라텍스 개질 콘크리트의 특성에 관한 연구)

  • Yoo, Deok-Ryong;Go, Seong-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.147-156
    • /
    • 2006
  • This study is purposed to improve the performance of concrete made of recycled coarse aggregate. For this, recycled aggregate concrete was produced with SBR latex, and fluidity, dynamic performance and drying shrinkage were examined. According to the result, with mixing 6% of SBR latex, fluidity having resistance against segregation can be insured and compressive and flexural strength was increased. Especially the increment in terms of flexures was remarkable. In addition to, with above mixing ratio, drying shrinkage was reduced. Therefore there is a strong inference that superior recycled aggregate concrete can be produced with using 6% of SBR latex.

Mechanical and Physical Performance of Ultra Rapid Hardening Roller Compacted Concrete for Pavement (조기강도 발현 롤러다짐 콘크리트의 물리.역학적 성능 평가)

  • Kim, Joon-Mo;Kang, Hee-Byung;Lee, Sang-Woo;Lee, Su-Jin;Park, Sung-Ki;Won, Jong-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.283-284
    • /
    • 2010
  • This study was evaluated the mechanical and physical performance of ultra rapid hardening roller compacted concrete. Mix proportion were compared with mix proportion without latex about mechanical and physical performance. The test results showed that mix proportion with latex presented excellent performance due to pore filling effect of latex for unification behavior.

  • PDF

Chemical Attack and Carbonation Properties of Latex-Modified Concrete Using Blast-furnace Slag (고로(高爐)슬래그 미분말(微粉末)을 사용(使用)한 라텍스개질(改質) 콘크리트의 화학적(化學的) 침식(侵蝕) 및 탄산화 특성(特性))

  • Hong, Chang-Woo;Jeong, Won-Kyong;Sim, Do-Sik
    • Resources Recycling
    • /
    • v.17 no.5
    • /
    • pp.11-18
    • /
    • 2008
  • The purpose of this study was to evaluate the effects of blast-furnace slag on chemical attack and carbonation of latex-modified concrete (LMC) and ordinary portland cement concrete as slag contents. Main experimental variables were performed latex contents (0%, 15%) and slag contents (0%, 30%, 50%). The compressive strengths, chemical attacks resistance and carbonation depth were measured to analyze the characteristic of the developed LMC and BS-LMC(latex-modified concrete added blast-furnace slag) on hardened concrete. The test results showed that compressive strength of BS-LMC with blast-furnace slag content 30% was quite similar to it of OPC without slag content. The structural quality deterioration was concerned when blast slag content was up to 50%. However, carbonation restraint of BS-LMC with blast-furnace slag 30% was bigger then that of opc. Also, the effects of added latex on OPC and BS-LMC were increased on the carbonation restraint and chemical attacks resistance.

Preparation and Application Characteristics of Carboxylated Styrene Butadiene Latex for Latex Modified Concrete (라텍스 개질 콘크리트용 Carboxylated Styrene Butadiene 라텍스의 제조와 적용 특성)

  • Lee, Bong-Kyu;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1076-1081
    • /
    • 2012
  • For the purpose of development of the latex suitable for latex modified concrete, experimental researches on the preparation of carboxylated styrene butadiene latex by the method of the two-step emulsion polymerization and application to concrete were performed. Sodium dodecylbenzene sulfonate and sodium salt of lauryl sulfonate were selected as anionic emulsifiers, and nonylphenoxy poly(ethyleneoxy) ethanols (n=10, 20, 40) as latex stabilizer. Potassium persulfate and sodium bisulfite were used as redox initiator, besides $Na_2HPO_4$ and $K_2CO_3$ as electrolytes. Polymerization recipe of latex suitable for latex modified concrete were suggested from the experimental researches on the effects of anionic emulsifiers and their concentration on the polymerization stability, and the effect of electrolytes concentration on the particle size of latex. Physical properties, such as slump, air contents, compressive and flexural strength, of latex prepared by suggested polymerization recipe were examined. The experimental results showed that latex modified concrete satisfied the quality standards in slump and air contents. Furthermore, it was turned out that the compressive and the flexural strength of latex modified concrete with 28 days curing time showed appreciably improvements.