• Title/Summary/Keyword: 라테라이트

Search Result 15, Processing Time 0.017 seconds

Chemical Weathering Characteristics of Red Saprolites at Granitic Hills in Yeongam, Southwestern Korea (한반도 남서부 영암의 화강암 구릉대 적색토의 화학적 풍화 특색)

  • Kim, Young-Rae
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.3
    • /
    • pp.315-327
    • /
    • 2012
  • Red saprolites are appeared in granitic hills in Yeongam, Southern Korean Peninsula. These red saprolites were analyzed for their geochemistry, including CIA, A-CN-K and A-CNK-FM ternary plots, to understand the chemical weathering trend and rubefaction of the saprolites. These saprolites were compared with laterite profiles in Cameroon formed under humid tropical conditions. The red saprolites in Yeongam show commonly massive loss of CaO, $Na_2O$, but $K_2O$ is being slow. The red saprolites in Yeongam relative to laterite and kaolinite profiles of Cameroon and Spain show weak chemical alteration owing to slow removal of $K_2O$, but high mafic constituents, $Fe_2O_3$ and MgO, for most of the samples. In the saprolites of Yeongam, mafic oxides become enriched because of the fast and massive removal of alkali constituents, such as CaO, $Na_2O$ and $K_2O$, relative to other elements, resulting in rubefaction of the saprolites. It is found that the rubefaction of the saprolites is not necessarily proportional to chemical weathering intensity.

  • PDF

Adsorption of Ni(II), Co(II), and Mg(II) from Sulfuric Acid Solution by Diphonix Resin for the Utilization of Laterite Ore (라테라이트광 활용을 위한 황산용액에서 Diphonix 수지의 니켈, 코발트, 마그네슘 흡착)

  • Lee, Man-Seung;Kim, Sang-Bae;Chae, Jong-Gwee
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.183-189
    • /
    • 2010
  • It is of importance to separate Ni(II) and Co(II) from Mg(II) in solution which was leached from nickel laterite ore. In order to investigate the possibility of separating Ni(II) and Co(II) from Mg(II), adsorption behavior of the three metals from individual and mixed sulfate solutions was investigated by using Diphonix resin. The concentration of each metal in solution was fixed at 100 ppm and the pH of the sulfuric acid solution was changed from 5 to 7. At ambient temperature, the adsorption behavior of the three metal ions followed Langmuir adsorption isotherm. The loading capacity of Diphonix resin for the three metal ions was obtained from the Langmuir isotherm. Since adsorption behavior of the three metal ions from the mixed solution was similar to each other, it was found to be difficult to separate Ni(II) and Co(II) from Mg(II) by using Diphonix resin.

Archaeological Reaserach of the Isimila Site, Tanzania and A Comparative Archaeology of Acheulean Industries in East Africa and East Asia. (탄자니아 이시밀라 아슐리안 유적발굴 조사 연구)

  • Bae Ki-dong
    • KOMUNHWA
    • /
    • no.63
    • /
    • pp.5-42
    • /
    • 2004
  • Several new results were come from the third excavation of the Isimila site in Tanzania which is well known for typical Acheulean industry from the late Middle Pleistocene deposits. The research was carried out in 2003 by the Institute of Cultural Propert

  • PDF

Situation of Utilization and Geological Occurrences of Critical Minerals(Graphite, REE, Ni, Li, and V) Used for a High-tech Industry (첨단산업용 핵심광물(흑연, REE, Ni, Li, V)의 지질학적 부존특성 및 활용현황)

  • Sang-Mo Koh;Bum Han Lee;Chul-Ho Heo;Otgon-Erdene Davaasuren
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.781-797
    • /
    • 2023
  • Recently, there has been a rapid response from mineral-demanding countries for securing critical minerals in a high tech industries. Graphite, while overwhelmingly dominated by China in production, is changing in global supply due to the exponential growth in EV battery sector, with active exploration in East Africa. Rare earth elements are essential raw materials widely used in advanced industries. Globally, there are ongoing developments in the production of REEs from three main deposit types: carbonatite, laterite, and ion-adsorption clay types. While China's production has decreased somewhat, it still maintains overwhelming dominance in this sector. Recent changes over the past few years include the rapid emergence of Myanmar and increased production in Vietnam. Nickel has been used in various chemical and metal industries for a long time, but recently, its significance in the market has been increasing, particularly in the battery sector. Worldwide, nickel deposits can be broadly classified into two types: laterite-type, which are derived from ultramafic rocks, and ultramafic hosted sulfide-type. It is predicted that the development of sulfide-type, primarily in Australia, will continue to grow, while the development of laterite-type is expected to be promoted in Indonesia. This is largely driven by the growing demand for nickel in response to the demand for lithium-ion batteries. The global lithium ores are produced in three main types: brine lake (78%), rock/mineral (19%), and clay types (3%). Rock/mineral type has a slightly higher grade compared to brine lake type, but they are less abundant. Chile, Argentina, and the United States primarily produce lithium from brine lake deposits, while Australia and China extract lithium from both brine lake and rock/mineral sources. Canada, on the other hand, exclusively produces lithium from rock/mineral type. Vanadium has traditionally been used in steel alloys, accounting for approximately 90% of its usage. However, there is a growing trend in the use for vanadium redox flow batteries, particularly for large-scale energy storage applications. The global sources of vanadium can be broadly categorized into two main types: vanadium contained in iron ore (81%) produced from mines and vanadium recovered from by-products (secondary sources, 18%). The primary source, accounting for 81%, is vanadium-iron ores, with 70% derived from vanadium slag in the steel making process and 30% from ore mined in primary sources. Intermediate vanadium oxides are manufactured from these sources. Vanadium deposits are classified into four types: vanadiferous titanomagnetite (VTM), sandstone-hosted, shale-hosted, and vanadate types. Currently, only the VTM-type ore is being produced.

A Study on the Mechanism of Soil Improvement Using Environment-friendly Organic Acid Material (친환경 유기산 재료를 활용한 지반개량 메커니즘에 관한 연구)

  • Lee, Jong-Hwi;Jung, Jae-Won;Han, Yun-Su;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.2
    • /
    • pp.23-34
    • /
    • 2013
  • An organic acid material, which can be manufactured by plants extraction, encourages microbe proliferation over time. Microbial activity, which is affected by organic acid, encourages accelerating consolidation with biochemical penetration; soil particles are compacted by microbes and pore water is dissipated quickly. Additionally, $CaCO_3$ for cementation was made by proliferating microbes. Accordingly, tests were conducted to investigate the unconfined compressive strength and permeability of soil samples aged with and without an organic acid. In the 96 days of aging, the strength was generally 1.5~2.5 times greater than those without an organic acid material and permeability was definitely decreased to 74.2~93.1%. SEM analysis showed the change of pore structure and the change of the total bacteria counts revealed the activity of microbes reflecting the engineering characteristics and this material would be an environment-friendly for soil improvement.