• Title/Summary/Keyword: 라이너(liner)

Search Result 228, Processing Time 0.028 seconds

Simulation Study for Engine Friction Reduction through the Enhancement of Temperature Distribution along Cylinder Liner in a Heavy Duty Diesel Engine (대형 상용 디젤 엔진의 실린더 라이너 온도 분포 개선을 통한 엔진 마찰 저감 - 해석적 연구)

  • Park, S.Y.
    • Journal of Power System Engineering
    • /
    • v.16 no.6
    • /
    • pp.11-18
    • /
    • 2012
  • 대형 상용 엔진에서 발생하는 유효 도시 마력의 약 4~15%는 마찰 손실을 통해서 사라지며 마찰 손실 중 약 40~55%는 엔진 실린더와 피스톤 사이의 마찰에 의하여 발생하여, 엔진 전체에서 발생하는 마찰 손실 중 가장 많은 부분을 차지하고 있다. 이 연구에서는 엔진 실린더 라이너의 온도 분포 개선을 통해 라이너를 따라 유막을 형성하고 있는 윤활유의 적정 점성을 유지시키는 방법을 제시하고자 한다. 피스톤-라이너에서 발생하는 마찰 특성은 피스톤의 행정 위치에 따라서 접촉 마찰과 유막에 의한 마찰로 구분되며 이에 따라 요구되는 윤활유의 점성 특성 또한 달라진다. 먼저 해석 모델을 통하여 실린더 라이너 내부 온도 분포 특성을 확인한 후 피스톤 마찰 특성을 고려한 적정 온도 분포를 고찰하며 실린더 라이너에 열저항 코팅을 통해서 이를 구현하였다. 또한 실린더-피스톤 간의 마찰/윤활 해석을 통하여 열저항 코팅의 마찰 개선효과를 확인하였다.

Development of a Grinding Robot System for the Engine Cylinder Liner's Oil Groove (실린더 라이너 오일그루브 가공 로봇 시스템 개발)

  • Noh, Tae-Yang;Lee, Yun-Sik;Jung, Chang-Wook;Oh, Yong-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.614-619
    • /
    • 2009
  • An engine for marine propulsion and power generation consists of several cylinder liner-piston sets. And the oil groove is on the cylinder liner inside wall for the lubrication between a piston and cylinder. The machining process of oil groove has been carried by manual work so far, because of the diversity of the shape. Recently, we developed an automatic grinding robot system for oil groove machining of engine cylinder liners. It can covers various types of oil grooves and adjust its position by itself. The grinding robot system consists of a robot, a machining tool head, sensors and a control system. The robot automatically recognizes the cylinder liner's inside configuration by using a laser displacement sensor and a vision sensor after the cylinder liner is placed on a set-up equipment.

A Study on the Material Properties of Grey Cast Iron for Cylinder Liner Treated by Thermo Plastic Deformation Process (열소성변형공정을 시행한 회주철제 실린더 라이너의 재료물성에 관한 연구)

  • Kim Tae-Hyoung;Kim Jong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.671-677
    • /
    • 2005
  • In internal combustion engines the usual material for the cylinder liner is because of its good wear resistance Apparently this wear resistance arises from the at iron to form a hard glazed surface when under sliding friction. When the cylinder liner wear limits, it shall be replace with new one according to the classification soci manufacturer's standards. However, adoption of alternative repairing method such a metalizing, thermo plastic deformation process became inevitable taking enormous cost renewal into consideration. In this paper. the material properties of cylinder liner of grey discussed on the basis of the results of experimental work of the thermo plastic deformation the worn out cylinder liner made of grey cast iron.

Strength Evaluation of the Cylinder Liner of Low-Speed Marine Engine (대형 엔진 실린더 라이너의 강도평가)

  • Kim, Byung-Joo;Son, Jung-Ho;Park, Jin-Soo;Choi, Ho-Jung
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.663-668
    • /
    • 2001
  • Strength evaluation was carried out for the cylinder liner of a low-speed marine engine. Calculation of temperature distribution, nonlinear structural analysis, material test, and fatigue strength evaluation are briefly introduced in this paper. Strengths of five liner models are compared, and the effect of materials experiencing different heat treatment is evaluated. Structural analysis including boundary and material non-linearities was performed for axisymmetric liner models. High cycle (fatigue limit) and low cycle (fatigue life) fatigue analyses are carried out. As results, localized high stress was occurred next to the mount line. Maximum stresses are varied significantly with respect to different liner models and different materials.

  • PDF

Development of Type 4 Composite Pressure Vessel by using PET Liner for Self-contained Breathing Apparatus (PET 라이너를 적용한 공기호흡기용 타입 복합재료 4 압력용기 개발)

  • Cho, Sung-Min;Lee, Seung-kuk;Cho, Min-sik;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.164-169
    • /
    • 2018
  • In this study, we solved the human hazard problem of aluminum liner by applying plastic PET liner which is widely used as a material for food and beverage containers in the market. In order to reinforce dome area by using low strength / high elongation plastic liner, The aluminum boss was covered on the plastic liner surface. In order to predict the performance of the developed product, the structural analysis was carried out by applying the three - dimensional laminated solid element, and the soundness of the product was verified through the prototype performance test.

A Finite Element Analysis on Cylinder Liner Deformation of a Diesel Engine (디젤기관 실린더 라이너 변형에 대한 유한요소 해석)

  • Sangho Ahn
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.1
    • /
    • pp.33-40
    • /
    • 2014
  • In this study the cylinder liner deformation which is one of the most influencing factors in a diesel engine oil consumption was performed by the finite element analysis on the basic designed structure consisting of the cylinder block, head and liners under the conditions of assembly, thermal and gas loads. Compared with a large number of other cylinder blocks showing remarkable harmonic orders of the liner distortion, results are excellent. Namely. the higher harmonic order amplitudes of the radial liner deformation amount to 1 ~ 2㎛ maximally. The main reason lies in the relatively large wall thickness of the liner which amounts to 8.2% of the bore diameter. Besides, a very stiff and symmetrical cylinder block design in combination with a bolt force introduction approximately 1.5mm below the block top deck have a further share on these results. Therefore excellent low oil consumption can be expected.

A Study on the Tubular Alumina Liner Subjected to High Pressure and High Temperature (고온 고압용 튜브형 알루미나 라이너에 관한 연구)

  • Oh, Je-Hoon;Lee, Dai-Gil;Lee, Su-Jeong;Lee, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.884-895
    • /
    • 1997
  • The finite element analysis for the tubular alumina liner which was shrink-fitted into a heat treated high speed steel (HSS) sleeve and subjected to high inner pressure and high temperature was performed. The parameters for the analysis were the interference between the alumina and the HSS, the temperature, the inner pressure, the coefficient of friction between the alumina and the HSS, and the taper at the sleeve ends. From the analysis, it was found that the tensile hoop stresses were decreased when the end parts of the HSS sleeve were tapered and the tensile stresses were decreased as the coefficient of friction between the alumina and the HSS was decreased. Also it was found that the alumina might be used as the structural liner for high pressure and high temperature when it was shrink-fitted into a heat treated HSS sleeve.

Low-Temperature Characteristics of Type 4 Composite Pressure Vessel Liner according to Rotational Molding Temperature (타입 4 복합재 압력용기 라이너의 회전 성형 온도에 따른 저온 특성)

  • Jung, Hong-Ro;Park, Ye-Rim;Yang, Dong-Hoon;Park, Soo-Jeong;Kim, Yun-Hae
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.147-152
    • /
    • 2022
  • Low-temperature characteristics according to internal temperature conditions during rotational molding of Type 4 pressure vessel liners were studied in this paper. Since rotational molding has a sensitive effect on the formability of the liner depending on the temperature conditions, the temperature conditions for the polyamide used should be accurately set. The structural changes of polyamide as the liner material was analyzed the surface by atomic force microscope (AFM), and the crystallinity measured with a differential scanning calorimeter (DSC) is used to evaluate the change of the mechanical strength value at low temperature. In addition, the formability of the liner was confirmed by observation of the yellow index inside the liner. As a result, as the melting range of the internal temperature becomes wider, the yellow index shows a lower value, and the elongation and impact characteristics at low temperatures are improved. It was also confirmed that the structure of the polyamide was uniform and the crystallinity was high by AFM and DSC. These experimental results contribute to the improvement of characteristics at low temperatures due to changes in temperature conditions during rotational molding.

A Study on Improving Fatigue Life for Composite Cylinder with Seamless Integrated Liner (이음매 없는 일체형 라이너를 갖는 복합재 압력용기의 피로수명 향상에 대한 연구)

  • Kim, Hyo-Joon
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.46-51
    • /
    • 2013
  • Composite cylinder is used by hydrogen fuel cell vehicles and natural gas vehicles because of high specific modulus, specific strength and fatigue resistance. composite cylinder has a seamless integrated liner and it is fully overwrapped with structural fibers of high strength carbon fibers in an epoxy matrix. In this study, filament winding pattern and autofrettage pressure design technique are presented considering structural weakness of knuckle and compressive residual stress. Presented methodology is verified by pressure cycling test of composite cylinders.