Ad-hoc 망은 인터넷과는 다른 독립적인 망을 구성하는 경우 사용되게 된다. 이러한 Ad-hoc의 특정 호스트가 인터넷 망과의 연결을 시도하는 경우, 이 호스트로의 패킷의 라우팅을 위해서는 모든 경로상의 라우터에서 이 호스트에 대한 정보의 엔트리가 추가되어야만 한다. 이는 망 구현 과정에서 확장성 (Scalability) 문제를 야기하게 된다. 즉, 라우팅 테이블 엔트리의 증가로 차지하는 라우터의 메모리 문제나, 해당 호스트의 정보를 찾고자 할 때의 소요시간으로 적용하기 어렵다. 이러한 확장성 문제를 제거하는 방법으로 자동으로 주소를 설정 하는 방식인 DHCP(Dynamic Host Configuration Protocol)에 대해서 알아 보았다. 그리고. DHCP의 문제점인 기존의 라우팅 정보를 손실되는 문제가 있어 적용하기 어렵다. 이에 본 논문은 확장성 문제를 제거하는 동시에 엑세스 포인트(access point)에서 NAT(Network Address Translation) 기술을 적용하여 AODV(Ad-Hoc On-Demand Distance Vector) 라우팅 프로토롤과 인터넷의 연동을 위한 메커니즘을 제안한다.
이동 애드혹 환경에서의 멀티캐스트 라우팅 테이블을 이용하여 패킷을 전달하기 위해서는 멀티캐스트 데이터 포워딩이 지원되어야 한다. 무선 환경에서의 멀티캐스트 데이터 포워딩은 유선 환경에서의 멀티캐스트 데이터 포워딩과는 차이기 있다. 유선 환경에서 노드의 네트워크 인터페이스는 다른 노드의 네트워크 인터페이스와 1대1로 연결되고, 네트워크 인터페이스로 들어온 패킷이 다른 노드로 전달되어야 한다면 해당되는 다른 네트워크 인터페이스를 통해 전달된다. 그러나 이동 애드혹 환경에서 대부분의 노드는 하나의 네트워크 인터페이스를 가지며 패킷 진입 인터페이스와 진출 인터페이스가 같고 노드의 무선 네트워크 인터페이스는 이웃 노드의 네트워크 인터페이스들과 1대다의 관계를 갖는다. 이동 애드혹 환경에서 멀티캐스트 데이터 포워딩시에 이러한 특성을 고려하지 않을 경우 패킷 중복현상과 라우팅 루프 문제 등이 유발될 수 있다. 본 연구에서 제안하고 구현한 멀티캐스트 데이터 포워딩 기법은 리눅스 환경에서 넷필터[1]와 중복을 방지하기 위한 별도의 테이블을 사용하여 트리 기반 멀티캐스트 라우팅 프로토콜에 의해 결정된 경로를 이용한 효율적인 멀티캐스트 데이터 포워딩을 지원한다.
본 논문에서는 양방향 토러스 네트워크와 웜홀 라우팅을 사용하는 다중컴퓨터에 대해 멀티캐스트 통신방법을 트리방식, 경로방식, 그리고 두 방식을 조합한 하이브리드방식으로 분류하였다. 경로방식으로는 동적분할 멀티캐스트 라우팅 알고리즘을 제안하였으며, 하이브리드방식으로는 라우팅의 첫 단계로 트리방식을 사용하고 두 번째 단계로는 경로방식을 사용하는 멀티캐스트 라우팅 알고리즘을 제안하여 성능을 분석하였다. 세가지 멀티캐스트 라우팅 알고리즘간의 성능은 메세지 길이에 따른 평균 지연시간을 사용하여 비교하였다. 그리고 웜홀 라우팅에서 플릿 버퍼 크기의 변화에 따른 성능을 가상 컷-스루와 비교 하였으며, 경로방식의 알고리즘을 사용하여 버퍼 크기의 변화에 따른 지연시간을 기준으로 두 스위칭 방식의 성능관계를 분석하였다.
현재 인터넷은 IPv4주소 고갈로 인해 종래의 클래스(class)별 주소의 분배와 사용을 지양하고 클래스 없는 CIDR(Classless InterDomain Routing)〔1〕방식을 채택하고 있다. 본 논문에서는 라우터의 개발 및 성능에 영향을 미치는 라우팅 엔트리의 분포와 특성을 다음의 세가지 관점에서 분석하였다. 그리고 분석에 사용된 데이터는 백본용 라우터의 라우팅 테이블이다. 첫째, 현재 인터넷에서 CIDR 방식에 따른 서브넷팅(Subnetting)과 슈퍼넷팅(Supernetting)〔2〕〔3〕정도를 분석하였으며 둘째, 현재 포워딩 테이블(Forwarding Table)내의 불필요한 포워딩 엔트리(Forwarding Entry)들이 차지하는 구성비를 조사하였다. 마지막으로는 멀티홈밍(Multi-homing)이 포워딩 테이블의 크기에 미치는 영향을 분석하였다. 조사에 의하면 MAE-East와 MAE-West〔4〕와 같은 백본(Backbon) 라우터의 경우에 A클래스는 8에서 26비트까지, B클래스는 14비트에서 27비트까지 그리고 C클래스는 17비트에서32비트까지 서브넷팅과 슈퍼넷팅이 되어있다. 또한 불필요한 포워딩 엔트리는 전체 엔트리의약 1%를 차지하고 있으며, 멀티홈밍 엔트리는 약 5%를 차지하는 것으로 확인되었다.
멀티캐스트는 실시간 멀티미디어 전송 등에서 그 중요성이 매우 커지고 있다. 이러한 응용 기술들은 네트워크의 QoS(Quality of Service)보장을 위해 많은 자원을 필요로 한다. 네트워크의 자원은 한정되어 있기 때문에, 효율적인 자원의 사용을 위해서는 효율적인 멀티캐스트 라우팅 경로를 설정하는 것이 결정적 수단이다. 최소비용 멀티캐스트 라우팅 문제는 다양한 트리 최적화 문제를 해결하기 위한 기본적인 문제이며 다양한 연구가 있어왔다. 제안하는 알고리즘은 최소비용멀티캐스트 트리를 생성하는 휴리스틱 알고리즘으로 잘 알려진 TM 알고리즘과 가중치를 사용하여, 멀티캐스팅의 다양한 트리 최적화 문제에 적용되어 QoS에 따른 네트워크 자원의 사용효율을 극대화 하는데 기여할 것이다.
전송-수신 쌍들을 연결하는 많은 수의 경로들로 이루어진 멀티캐스트 트리에서 네트워크 구성요소의 실패는 멀티캐스트 트리의 일부를 손상시킬 수 있다. 그러나 하나의 구성요소의 실패를 복구하기 위해 전체 멀티캐스트 트리를 다시 만드는 것은, 실패의 영향을 받지 않은 경로를 사용하는 그룹 멤버들까지도 서비스의 중단을 겪어야 하기 때문에 바람직하지 않다. 본 논문은 QoS 멀티캐스트 트리에서 재구성해야 할 영역을 줄이면서 재구성의 성공 가능성을 최대화하는 계획된 재구성(Pre-Planned Reconfiguration: PPR) 정책을 제안한다. PPR 방식은 멀티캐스트 트리의 전송-수신 쌍을 연결하는 각 경로에 재구성 경로를 미리 만들고, 이들 경로에 필요한 자원을 미리 예약해 둔다. 이를 위해 우리는 기존 멀티캐스트 트리의 변화를 최소화하며 손상되지 않은 부분들의 서비스를 최대한 유지하는 재구성 경로의 라우팅 방법을 고안하였으며, 효율적 자원 공유 방법을 사용하여 재구성 경로들을 위해 예약된(실패가 일어나지 않을 경우 사용되지 않는) 자원의 양을 줄인다. PPR 방식은 실패 복구를 위해 여러 멀티캐스트 세션들이 동시에 엄청난 경쟁을 하는 것을 막을 수 있다. 시물레이션을 통해 최단경로 라우팅을 사용하는 전송자 중심 멀티캐스트 트리와 공유 멀티 캐스트 트리에서 각각 성능을 평가한 결과 PPR 방식은 적당한 오버헤드내에서 모든 그룹 멤버들에게 성공적인 재구성을 제공한다. 또한 PPR 방식은 그룹 멤버쉽이 동적으로 변화할 때에도 잘 적응한다.
무선 센서 네트워크(Wireless Sensor Network : WSN)는 자율적으로 라우팅 경로를 구성하여 물리적으로 떨어진 지역의 데이터를 수집하는 무선망이다. 본 논문은 주기적으로 수집한 모든 데이터를 하나의 기지 노드로 전달하는 convergecast 환경에서 퓨전(fusion)을 반영한 라우팅 방법을 제안한다. 지금까지 대부분의 연구는 무퓨전(no-fusion)과 전퓨전(full-fusion)의 두 경우만을 다루었다. 제안하는 Fusion rate based Spanning Tree(FST)는 임의의 퓨전율 f ($0{\leq}f{\leq}1$)에서 총 전송 에너지 비용을 줄이는 라우팅 경로를 제공 한다. FST는 무퓨전(f = 0)과 전퓨전(f = 1)의 convergecast에서 각각 최적의 토폴로지인 최소 경로 트리(Shortest Path spanning Tree : SPT)와 최소 스패닝 트리(Minimum Spanning Tree : MST)를 제공하며, 임의의 f (0 < f < 1)에 대해서도 SPT나 MST보다 우수한 토폴로지를 제공한다. 시뮬레이션은 100-노드 WSN에서 모든 f ($0{\leq}f{\leq}1$)에 대해 FST의 총 길이가 평균적으로 MST보다 약 31%, SPT보다 약 8% 절약 됨을 보여준다. 따라서 우리는 FST가 WSN에서 매우 유용한 토폴로지임을 확인하였다.
네트워크에 연결되는 장치의 개수가 늘어남에 따라서 각 장치에 패킷을 전달하는 경로 결정에 필요한 라우팅 정보의 양도 늘어나고 있다. 라우팅 정보의 양이 증가하여 라우팅 테이블의 크기가 커질 경우 패킷의 전달 경로를 결정하기 위한 테이블 검색 시간이 길어져 라우팅 성능이 저하될 수 있다. 본 논문에서는 지리적 정보를 이용하여 지리적 거리로 계산한 다음 홉 라우터와 네트워크 상의 라우팅 경로에서 계산된 다음 홉 라우터가 동일할 경우 해당 엔트리를 삭제하는 방법으로 라우팅 테이블의 크기를 작게 유지하는 한편 라우팅은 정상적으로 수행하는 기법을 소개하고자 한다.
ZigBee는 WPAN(Wireless Personal Area Networks)을 위해 IEEE 802.15.4 표준에 근거하여 저비용, 저전력 소모를 위해 만들어진 표준이다. ZigBee 표준에서 라우팅을 위해 AODV(Ad-hoc On-Demand Distance Vector)와 트리 라우팅(Tree Routing) 두 가지 방법이 제시되었다. 트리 라우팅은 IEEE 802.15.4 MAC 계층의 토폴로지 형성 과정 동안에 만들어진 부모-자식 관계에 근거하여 센서 노드로부터 싱크 노드(Sink node)로 데이터를 전송한다. 이 방법에서 새로운 노드가 네트워크에 가입하기 위해 RSSI(Received signal strength indicator) 신호가 가장 강한 노드를 부모 노드로 선택한다. 그러므로 트래픽 분산이 이루어지지 않아 일부 노드는 많은 트래픽 양을 전달하게 되고 에너지는 빠르게 고갈된다. 본 논문에서는 트래픽 분산을 위해 링크 품질과 트래픽 양 정보를 이용하는 새로운 메트릭(Metric)을 제시한다. 제안되는 방법은 RSSI 신호 세기를 사용하는 대신에 새롭게 제안된 메트릭을 사용하여 부모 노드를 선택하여 네트워크에 가입한다. TinyOS TOSSIM(TinyOS mote SIMulator) 환경에서 시험을 통하여 제안한 방법이 기존 트리 라우팅 방법에 비해 우수한 성능을 가짐을 알 수 있다.
일반적으로 센서 네트워크는 라우팅 트리를 구축한 후에 시간 동기화를 수행한다. 이로 인하여 시간 동기화가 늦어지고 교환하는 패킷이 증가하여 에너지를 많이 소모하는 문제를 유발한다. 본 논문에서는 한 번의 플러딩 과정으로 라우팅 트리를 구축하고 이와 동시에 시간 동기화를 수행하는 TSRA (Time Synchronization Routing Algorithm) 알고리즘을 제안한다. 라우팅 패킷에 패킷 수신 시간과 패킷 전송시간을 추가하여 두 노드간 시간 차이를 구하고, 시간 차이를 전송함으로써 노드들 간의 시간 동기화를 구현한다. 시뮬레이션에 의하여 제안하는 알고리즘은 기존의 동기화 알고리즘인 TPSN과 동등한 수준의 정확도를 보이면서 동기화 속도 및 에너지 소모 면에서 우수하다는 것을 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.