• Title/Summary/Keyword: 라우팅 정보 변조 공격

Search Result 7, Processing Time 0.032 seconds

Method of Detecting and Isolating an Attacker Node that Falsified AODV Routing Information in Ad-hoc Sensor Network (애드혹 센서 네트워크에서 AODV 라우팅 정보변조 공격노드 탐지 및 추출기법)

  • Lee, Jae-Hyun;Kim, Jin-Hee;Kwon, Kyung-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2293-2300
    • /
    • 2008
  • In ad-hoc sensor network, AODV routing information is disclosed to other nodes because AODV protocol doesn't have any security mechanisms. The problem of AODV is that an attacker can falsify the routing information in RREQ packet. If an attacker broadcasts the falsified packet, other nodes will update routing table based on the falsified one so that the path passing through the attacker itself can be considered as a shortest path. In this paper, we design the routing-information-spoofing attack such as falsifying source sequence number and hop count fields in RREQ packet. And we suggest an efficient scheme for detecting the attackers and isolating those nodes from the network without extra security modules. The proposed scheme doesn't employ cryptographic algorithm and authentication to reduce network overhead. We used NS-2 simulation to evaluate the network performance. And we analyzed the simulation results on three cases such as an existing normal AODV, AODV under the attack and proposed AODV. Simulation results using NS2 show that the AODV using proposed scheme can protect the routing-information-spoofing attack and the total n umber of received packets for destination node is almost same as the existing norm at AODV.

Analysis of the Bogus Routing Information Attacks in Sensor Networks (센서 네트워크에서 AODV 라우팅 정보 변조공격에 대한 분석)

  • Lee, Myung-Jin;Kim, Mi-Hui;Chae, Ki-Joon;Kim, Ho-Won
    • The KIPS Transactions:PartC
    • /
    • v.14C no.3 s.113
    • /
    • pp.229-238
    • /
    • 2007
  • Sensor networks consist of many tiny sensor nodes that collaborate among themselves to collect, process, analyze, and disseminate data. In sensor networks, sensor nodes are typically powered by batteries, and have limited computing resources. Moreover, the redeployment of nodes by energy exhaustion or their movement makes network topology change dynamically. These features incur problems that do not appear in traditional, wired networks. Security in sensor networks is challenging problem due to the nature of wireless communication and the lack of resources. Several efforts are underway to provide security services in sensor networks, but most of them are preventive approaches based on cryptography. However, sensor nodes are extremely vulnerable to capture or key compromise. To ensure the security of the network, it is critical to develop suity mechanisms that can survive malicious attacks from "insiders" who have access to the keying materials or the full control of some nodes. In order to protect against insider attacks, it is necessary to understand how an insider can attack a sensor network. Several attacks have been discussed in the literature. However, insider attacks in general have not been thoroughly studied and verified. In this paper, we study the insider attacks against routing protocols in sensor networks using the Ad-hoc On-Demand Distance Vector (AODV) protocol. We identify the goals of attack, and then study how to achieve these goals by modifying of the routing messages. Finally, with the simulation we study how an attacker affects the sensor networks. After we understand the features of inside attacker, we propose a detect mechanism using hop count information.

A Study on Security Routing using MD5 in MANET Environments (MANET 환경에서 MD5를 이용한 보안 라우팅에 관한 연구)

  • Lee, Cheol-Seung;Jung, Sung-Ok;Lee, Joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.728-731
    • /
    • 2008
  • Recently demands in construction of the stand-alone networks and interconnection between convergence devices have led an increase in research on IETF MANET working group, Bluetooth, and HomeRF working group and much attention has been paid to the application of MANET as a Ubiquitous network which is growing fast. With performance both as hosts and routers, easy network configuration, and fast response, mobile nodes participating in MANET are suitable for Embedded computing, but have vulnerable points, such as lack of network scalability and dynamic network topology due to mobility, passive attacks, active attacks, which make continuous security service impossible. For perfect MANET setting, routing is required which can guarantee security and efficiency through secure routing. In routing in this study, hashed AODV is used to protect from counterfeiting messages by malicious nodes in the course of path 'finding and setting, and disguising misrouted messages as different mobile nodes and inputting them into the network.

  • PDF

Secure Routing Mechanism using one-time digital signature in Ad-hoc Networks (애드혹 네트워크에서의 one-time 전자 서명을 이용한 라우팅 보안 메커니즘)

  • Pyeon, Hye-Jin;Doh, In-Shil;Chae, Ki-Joon
    • The KIPS Transactions:PartC
    • /
    • v.12C no.5 s.101
    • /
    • pp.623-632
    • /
    • 2005
  • In ad-hoc network, there is no fixed infrastructure such as base stations or mobile switching centers. The security of ad-hoc network is more vulnerable than traditional networks because of the basic characteristics of ad-hoc network, and current muting protocols for ad-hoc networks allow many different types of attacks by malicious nodes. Malicious nodes can disrupt the correct functioning of a routing protocol by modifying routing information, by fabricating false routing information and by impersonating other nodes. We propose a routing suity mechanism based on one-time digital signature. In our proposal, we use one-time digital signatures based on one-way hash functions in order to limit or prevent attacks of malicious nodes. For the purpose of generating and keeping a large number of public key sets, we derive multiple sets of the keys from hash chains by repeated hashing of the public key elements in the first set. After that, each node publishes its own public keys, broadcasts routing message including one-time digital signature during route discovery and route setup. This mechanism provides authentication and message integrity and prevents attacks from malicious nodes. Simulation results indicate that our mechanism increases the routing overhead in a highly mobile environment, but provides great security in the route discovery process and increases the network efficiency.

Digital Signature Model of Sensor Network Using Hash Chain (해쉬체인을 이용한 센서네트워크의 디지털서명 모델)

  • Kim, Young-Soo;Cho, Seon-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2459-2464
    • /
    • 2009
  • In sensor network there are no nodes or servers that are exclusively responsible for packet forwarding and routing. Instead, sensor nodes participating in network communications perform these activities. Thus, they are vulnerable to the alteration and forgery of message in the process of packet forwarding and routing. To solve this problem, a security to ensure authentication and integrity of routing and forwarding messages should be required. To do this, we propose the hash chain-based digital signature model where it takes less time to compute in generating and verifying the digital signature model, unlike he public key-based digital signature model, and verify if this model is proper by comparing computation times between tow models.

Anonymous Ad Hoc Routing Protocol based on Group Signature (그룹서명에 기반한 익명성을 제공하는 애드 혹 라우팅 프로토콜)

  • Paik, Jung-Ha;Kim, Bum-Han;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.5
    • /
    • pp.15-25
    • /
    • 2007
  • According to augmentation about interesting and demanding of privacy over the rest few years, researches that provide anonymity have been conducted in a number of applications. The ad hoc routing with providing anonymity protects privacy of nodes and also restricts collecting network information to malicious one. Until recently, quite a number of anonymous routing protocols have been proposed, many of them, however, do not make allowance for authentication. Thus, they should be able to have vulnerabilities which are not only modifying packet data illegally but also DoS(denial of service) attack. In this paper, we propose routing protocol with providing both anonymity and authentication in the mobile ad hoc network such as MANET, VANET, and more. This scheme supports all of the anonymity properties which should be provided in Ad Hoc network. In addition, based on the group signature, authentication is also provided for nodes and packets during route discovery phase. Finally, route discovery includes key-agreement between source and destination in order to transfer data securely.

Technical Trend of Security in Ubiquitous Sensor Networks (u-센서 네트워크 보안 기술 동향)

  • Kim, S.H.;Kang, Y.S.;Chung, B.H.;Chung, K.I.
    • Electronics and Telecommunications Trends
    • /
    • v.20 no.1 s.91
    • /
    • pp.93-99
    • /
    • 2005
  • 최근 새롭게 등장한 유비쿼터스 컴퓨팅 환경은 기존의 컴퓨팅 환경과는 다르게 통신 인프라가 없는 환경에서도 동작이 가능한 저전력 소출력의 무선 센서간의 네트워크를 형성하고 이들간의 정보 유통이 이루어진다. 이러한 u-센서 네트워크는 Ad-hoc 성격뿐만 아니라 무선이 가지는 방송 특성으로 센서정보의 도청, 비정상적 패킷의 유통, 메시지의 재사용 등의 데이터 위. 변조 문제와 네트워크 전체를 마비시킬 수 있는 서비스 거부 등의 공격에 쉽게 노출된다. 본 고에서는 센서 네트워크에서의 정보보호요구사항과 구조, 키 관리의 문제 및 라우팅과 수집된 데이터를 집계하는 데 있어서의 보안 이슈와 동향에 대해 소개한다.