• Title/Summary/Keyword: 라우분지

Search Result 14, Processing Time 0.054 seconds

Provenance of Sediments and Evidence of Hydrothermal Venting Adjacent to the Fonualei Rift and Spreading Center, Lau Basin, Southwest Pacific (남서태평양 라우분지 푸누아레이 열곡확장대 인근 퇴적물의 기원과 열수 분출의 증거)

  • Kim, Mun Gi;Hyeong, Kiseong;Seo, Inah;Yoo, Chan Min
    • Ocean and Polar Research
    • /
    • v.42 no.1
    • /
    • pp.33-47
    • /
    • 2020
  • The bulk and partition geochemistry was studied in two sediment cores collected from the axial valley of the north-central Fonualei Rift and Spreading Center (FRSC), Lau back-arc Basin, southwest Pacific. The sediments consist of mostly volcanic ash, although minor amounts of biogenic and other components were present in some intervals. The major element composition of bulk sediments recalculated to a carbonate-free basis was in good agreement with the magma compositions of the adjacent Tofua Arc and the FRSC, with only significant difference in Mn content. The enrichment of Mn and other associated elements (e.g. Cu, Co, Ni, and P) is attributed to hydrothermal input to the sediments, as evidenced by their significant partitioning in the non-detrital phases according to the partition geochemistry. Hydrogenetic and diagenetic inputs were assessed to be relatively insignificant. Estimated hydrothermal Mn fluxes during the Holocene ranged between 5.0 and 37.1 mg cm-2 kyr-1, with the higher values in younger sediments, suggesting enhanced hydrothermal activity. The hydrothermal Mn fluxes comparable to or higher than those reported from other spreading centers with strong hydrothermal activities may indicate the presence of unknown hydrothermal vent sites and/or topographic restriction on the dispersal of hydrothermal plumes in the northern part of the FRSC.

Deep Sea Three Components Magnetometer Survey using ROV (ROV를 이용한 심해 삼성분자력탐사 방법연구)

  • Kim, Chang-Hwan;Park, Chan-Hong
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.298-304
    • /
    • 2011
  • We conducted magnetic survey using IBRV (Ice Breaker Research Vessel) ARAON of KORDI (Korea Ocean Research and Development Institute), ROV (Remotely Operated Vehicle) of Oceaneering Co. and three components vector magnetometer, at Apr., 2011 in the western slope of the caldera of TA25 seamount, the Lau Basin, the southwestern Pacific. The depth ranges of the survey area are from about 900 m to 1200 m, below sea level. For the deep sea magnetic survey, we made the nation's first small deep sea three components magnetometer of Korea. The magnetometer sensor and the data logger was attached with the upper part and lower part of ROV, respectively. ROV followed the planning tracks at 25 ~ 30 m above seafloor using the altimeter and USBL (Ultra Short Base Line) of ROV. The three components magnetometer measured the X (North), Y (East) and Z (Vertical) vector components of the magnetic field of the survey area. A motion sensor provided us the data of pitch, roll, yaw of ROV for the motion correction of the magnetic data. The data of the magnetometer sensor and the motion sensor were recorded on a notebook through the optical cable of ROV and the network of ARON. The precision positions of magnetic data were merged by the post-processing of USBL data of ROV. The obtained three components magnetic data are entirely utilized by finding possible hydrothermal vents of the survey area.

Hydrothermal Alteration around the Tofua Arc (TA) 25 Seamounts in Tonga Arc (통가열도 TA 25 해저산의 열수변질)

  • Cho, Hyen Goo;Kim, Dong-Ho;Koo, Hyo Jin;Um, In Kwon;Choi, Hunsoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.169-181
    • /
    • 2014
  • Korea government has consistently investigated the development of economic mineral deposits in the Tofua volcanic arc, Tonga since 2008 for the secure of sea floor mineral resources. We studied the composition and distribution of minerals formed by hydrothermal activity around TA 25 seamounts of the Tofua volcanic arc, Lau Basin, Tonga, using X-ray diffraction analysis, scanning electron microscopy, X-ray fluorescence spectrometry, and inductively coupled plasma atomic emission spectrometry. We used 7 core samples and 9 surface sediment samples. Barite, sphalerite, and clinoclase are present in the most volcanic vent area. Gypsum, smectite, and kaolin mineral are distributed in vent A area, chalcopyrite, pyrite, smectite, and kaolin mineral are in vent B and C area, and gypsum, chalcopyrite, pyrite, and goethite are in vent D area. From the study of clay fraction, smectite and few kaolinite are detected in the most studied area except inner part of caldera, which suggest that argillic alteration are dominant in the volcanic vent areas. Various sulfide or arsenide minerals were found in the hydrothermal vent B, C, and D. The mineralogy and geochemistry suggest higher hydrothermal activities in volcanic vent B, C, and D compared to vent A and inner caldera area. Therefore higher probabilities of massive sulfide deposits may occur in hydrothermal vent B, C, and D.

Chemical Characteristics for Hydrothermal Alteration of Surface Sediments from Submarine Volcanoes of the Tonga Arc (통가열도 해저화산 표층 퇴적물 내 열수변질의 화학적 특성)

  • Um, In Kwon;Chun, Jong-Hwa;Choi, Hunsoo;Choi, Man Sik
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.245-262
    • /
    • 2013
  • We analyzed 29 surface sediment samples in five submarine volcanoes (TA12, TA19, TA22, TA25, and TA26) located in the southern part of the Tonga arc for trace elements and rare earth elements to investigate characteristics of the hydrothermal alteration of surface sediments. Based on analytical results of trace element and rare earth element (REE), surface sediments of TA12, TA19, and TA22 submarine volcanoes, which are located in the northern part of the study area, were very little or not influenced by hydrothermal fluids. In contrast, some stations of TA25 and TA26 submarine volcanoes were strongly affected by hydrothermal fluids. However, these two submarine volcanoes showed different features in element concentration in the sediments. Some stations of TA25 submarine volcano showed enrichment of Ni, Cu, Sn, Zn, Pb, Cr, Cd, Sb, W, Ba, Ta, Rb, Sr, and As, however, those of TA26 submarine volcano showed enrichment of Sn, Zn, Pb, Cd, Sb, Ba, Rb, and Sr. Stations which enriched trace elements were observed, enriched REEs were also observed. Average upper continental crust (UCC)-normalized REE patterns of the surface sediments generally showed low light REE (LREE) abundances and increased heavy REE (HREE) abundances. Eu enrichment was identified at several stations of TA25 and TA26 submarine volcanoes. In addition, enrichment of Ce was found at some stations of TA26 submarine volcano and these enrichment patterns were similar with hydrothermal fluid of near stations. Furthermore, TA25 and TA26 submarine volcanoes showed different enrichment characteristics of trace elements and REE. Trace elements were concentrated at TA25 submarine volcano. TA26 submarine volcano, on the other hand, observed highly enrichment of REE especially, Eu and Ce. As a result of the investigation, the characteristics and concentrations of REEs and trace elements in the surface sediments of each submarine volcano can be applied to identify hydrothermal alteration of sediments during exploration for hydrothermal deposits.