• Title/Summary/Keyword: 라우분지

Search Result 14, Processing Time 0.025 seconds

A Study on Noise Characteristic of Multi-channel Seismic Data for the Hydrothermal Deposit Survey at Lau Basin, South Pacific (열수광상 탐사를 위한 남태평양 라우분지 다중채널 탄성파 자료의 잡음특성 연구)

  • Ok, Soo-Jong;Ha, Young-Soo;Lee, Jin-Woo;Shin, Sung-Ryul
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.235-235
    • /
    • 2011
  • Lau basin of south Pacific, as an active back arc basin, is promising area bearing seafloor massive hydrothermal deposit that is located in a subduction zone between the Pacific ocean plate and Indo-Australian continental plate. Korea Ocean Research and Development Institute tracked from 2004 to 2006 the hydrothermal activity to the extension of the northeast Lau Basin, targeting seamount. hydrothermal activity by tracking was found hydrothermal evidences. In this study, Marine seismic survey was carried out in the Lau basin seamount of the possibility of hydrothermal deposit. In particular, Marine magnetic survey and seismic survey was carried out at the same time in TA-12 seamount and noise characteristics were found in the seamount. the main process of data processing is Bandpass filter, FK filter, Deconvolution for noise attenuation such backscatter and multiple reflections. the migration is performed to compensate for reflection points followed by seamount of a slope. In this study, bedrock and upper strata could be identified and in the Future, the comparative method with Multi Beam Echo Sounder(MBES) are likely to derive the correct velocity model, the marine magnetic survey results should be considered.

  • PDF

The Study of Hydrothermal Vent and Ocean Crustal Structure of Northeastern Lau Basin Using Deep-tow and Surface-tow Magnetic Data (심해 및 표층 지자기 자료를 이용한 라우분지 북동부의 열수 분출구 및 해저 지각 구조 연구)

  • Kwak, Joon-Young;Won, Joong-Sun;Park, Chan-Hong;Kim, Chang-Hwan;Ko, Young-Tak
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.81-92
    • /
    • 2008
  • Fonualei Rift and Spreading Center(FRSC) and Mangatolu Triple function(MTJ) caldera are located in northeastern part of Lau basin which is the active back-arc basin. Deep-tow and surface-tow magnetic surveys are carried out in FRSC. In deep-tow magnetic survey, to compensate for influence of uneven distance between bathymetry and sensor height, magnetic anomaly is continued upward to a level plane by using the Guspi method. We calculate crustal magnetization using Parker and Huestis's inversion algorithm, and try to find the hydrothermal vent and understand the structure of ocean floor crust. The result of deep-tow magnetic survey at FRSC showed that Central Anomaly Magnetization High(CAMH) recorded the max value of 4.5 A/m which is associated with active ridge. The direction of SSW-NNE corresponds with the direction of the principal spreading ridge in Lau basin. The low crustal magnetizaton$(174^{\circ}35.1'W,\;16^{\circ}38.4'S)$ of -4.0 A/m is supposed to correlate with submarine hydrothermal vent. Surface-tow magnetic data were collected in MTJ caldera$(174^{\circ}00'W,\;15^{\circ}20'S)$. The prevailing SSW-NNE direction of collapsing walls and the presence of CAMH at the center of caldera strongly indicate the existence of active spreading ridge in ancient times.

통가 열수광상 지역의 해상 및 심해 지자기 조사 연구

  • Kim, Chang-Hwan
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.124-127
    • /
    • 2010
  • 본 연구에서는 통가 해역 라우분지의 열수 광상 가능성이 있는 해산들에 대하여 자력탐사가 수행되었다. 그 중 TA 09 해산에 대하여 심해견인 자력탐사가 실시되었으며 심해견인 자력탐사는 정밀한 탐사를 위하여 해저면에서 약 50 ~ 60 m 고도를 유지하며 자력계를 견인하였다. 탐사지역의 총 자력 성분은 Overhauser Proton Magnetomer (모델 SeaSPY 300(해상자력계)m, SeaSPY 6000(심해견인자력계))를 이용하여 측정되었다. 탐사 해산들 중 해상자력탐사와 심해자력탐사가 같이 수행된 TA 09 해산과 주요 열수 광상 유망 지역으로 분류되는 TA 12, 26 해산에 대해서만 측정된 지자기값을 이용하여 자기이상도를 구하였으며 자화역산법을 이용하여 자화이상도를 제작하고 분석하였다. TA 09 해산과 TA 26 해산에서의 해상 자기이상도는 쌍극자 이상형태의 단순이상을 보이며 TA 12 해산에서는 정상부에 고이상이 나타나고 그 주변으로는 저이상대가 분포하고 있다. TA 09 해산에서의 해상자력계에 의한 자기이상치와 심해견인자력계에 의한 자기이상치를 비교하여 보면 거의 10배 이상의 해상도 차이를 보여준다. 연구지역 탐사해산들의 해저지형과 비교하여 보면 열수분출대의 가능성이 높은 저자화이상대들은 주로 해산의 정상부 및 정상부 칼데라와 그 칼데라 주변부에 주로 위치하고 있는 모습을 나타내고 있다. 향후 타 탐사 해산들에 대한 자기이상에 대한 정밀처리/분석 후 탄성파 탐사결과, 암석샘플의 결과 및 지화학결과 등과 비교하여 열수광상의 존재 여부 및 위치 추정 분석이 필요할 것으로 판단된다.

  • PDF

Hydrothermal Alteration Around the TA 26 Seamounts of the Tofua Volcanic Arc in Lau Basin, Tonga (통가국 라우분지 TA 26 해저산의 열수변질작용)

  • Cho, Hyen Goo;Kim, Young-Ho;Um, In Kwon;Choi, Hunsoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.233-247
    • /
    • 2012
  • We have researched the distribution and characteristics of seafloor hydrothermal deposits for the development of economic mineral deposits in the Lau Basin, Tonga since 2009. In this study, we interpreted hydrothermal alteration around TA 26 seamounts of the Tofua volcanic arc using X-ray diffraction analysis for bulk sample and preferred-oriented specimen of clay fraction. We used 2 core samples and several surface samples. Plagioclase and quartz are dominant mineral in the basement rock, whereas kaolin mineral and smectite are superior in marine surface sediments. Especially sulfate and sulfide minerals such as gypsum, barite, sphalerite, and pyrite are predominant in the vent sediments. When we compare the mineral composition between basement rock and sea surface sediments, argillic alteration zone composed of kaolin mineral and smectite could be produced by hydrothermal fluids. Based on the downcore variation of mineral assemblages, most portion of MC08H-06 core could be interpreted as argillic alteration zone composed of kaolin mineral and smectite except top 2 cm area. Various sulfate or sulfide minerals and argillic alteration zone suggest a high probability of massive sulfide deposits in the seafloor of the TA 26 seamount.

Characterizing Magnetic Properties of TA (Tofua Arc) 22 Seamount (23° 34′ S) in the Lau Basin, Southwestern Pacific (남서태평양 라우분지 TA 22 해저산(23° 34′ S)에서의 지자기 특성 연구)

  • Choi, Soon Young;Kim, Chang Hwan;Park, Chan Hong;Kim, Hyung Rae
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.2
    • /
    • pp.67-81
    • /
    • 2018
  • We acquired the magnetic and bathymetry data around the TA (Tofua Arc) 22 seamount in the Lau Basin for finding submarine hydrothermal deposits. From the data, we estimated the magnetic characteristics in the study area. The bathymetry shows that TA 22 seamount consists of the western and eastern summits. Each summit exhibits a caldera. The western caldera is smaller, but deeper than the eastern caldera. The slope gradients of the TA 22 are steeper around ~1000 m depth range and relatively gentle at the summit areas with the small difference of two calderas. The magnetic properties of TA 22 seamount present high anomalies at the summit and the vicinity of the caldera. Low magnetization zones appear over the outer flanks and center of the calderas. These magnetic patterns are similar to the previous studies which had represented high anomalies and low magnetization zones inside of the summit area or on the flank of the outside of the summit area. The results of the 2D magnetic forward modeling with seismic profiles show about 20 nT of RMSEs (root mean square error) between the modeled and observed values. The low RMSEs proposes a good correlation between the modeled 2D structure and the geophysical observation in this study area. Based on the modeling and magnetization distribution, hydrothermal deposits are predicted to be located at the inner area of the calderas or at small mounds around caldera rims.

The Exploration Methodology of Seafloor Massive Sulfide Deposit by Use of Marine Geophysical Investigation (해양 지구물리 탐사를 이용한 해저열수광상 부존지역 탐지 방법)

  • Kim, Hyun-Sub;Jung, Mee-Sook;Kim, Chang-Hwan;Kim, Jong-Uk;Lee, Kyeong-Yong
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.167-176
    • /
    • 2008
  • Lau basin of the south Pacific, as an active back arc basin, is promising area bearing seafloor massive hydrothermal deposit that is located in a subduction zone between the Pacific ocean plate and Indo-Australian continental plate. We performed multi-beam bathymetry survey in the Lau basin using EM120, to find out high hydrothermal activity Bone. Fonualei Rift and Spreading Center (FRSC) and Mangatolou Triple Junction (MTJ) area were selected for precise site survey through seafloor morphology investigation. The result of surface and deep-tow magnetometer survey showed that Central Anomaly Magnetization High (CAMH) recorded which is associated with active ridge in FRSC-2 and revealed very low magnetic anomalies that can be connected to past or present high hydrothermal activity in MTJ-1 seamount area. Moreover, the physical and chemical tracers of hydrothermal vent flume, i.e., transmission, hydrogen ion concentration (pH), adenosine triphosphate (ATP), methane (CH4) by use of CTD system, showed significant anomalies in those areas. From positive vent flume results, we could conclude that these areas were or are experiencing very active volcanic activities. The acquired chimney and hydrothermal altered bed rock samples gave us confidence of the existence of massive hydrothermal deposit. Even though not to use visual exploration equipment such as ROV, DTSSS, etc., traditional marine geophysical investigation approach might be a truly cost-effective tool for exploring seafloor hydrothermal massive deposit.

Magnetic Characteristics of TA19-1 and TA19-2 Seamounts in the Lau Basin, the South Western Pacific (남서태평양 라우분지 TA19-1 해산과 TA19-2 해산의 지자기 특성 연구)

  • Kim, Chang Hwan
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.395-404
    • /
    • 2014
  • We conducted the geophysical survey of possible hydrothermal vent sites at 2009, in the Lau Basin, the south western Pacific and analyzed the magnetic characteristics of TA19-1 and TA19-2 seamounts. TA19-1 is a cone-shaped seamount with a caldera summit. TA19-2 seamount is bigger and shows more complicated topography than TA19-1 seamount. TA19-2 has a large caldera, a summit in the west side of the caldera and several crests. Simple dipole anomalies with a high over the north and a low over the south occur in TA19-1 seamount. High magnetic anomalies are located in the northern flank and the summit of TA19-2 seamount and low anomalies around the summit and the caldera. The results of bathymetry and magnetic data suggest that TA19-2 seamount might have more complicated magmatic process than TA19-1. Low magnetization zones are located over the summit, the calderas and the caldera rims. The magnetization lows indicate that submarine hydrothermal vents, along faults and fracture zones, could have caused an alteration of magnetic minerals. The magnetization highs over the summit and the calderas might have been related with later magmatisms like volcanic sills, intrusions.