Browse > Article
http://dx.doi.org/10.7582/GGE.2018.21.2.067

Characterizing Magnetic Properties of TA (Tofua Arc) 22 Seamount (23° 34′ S) in the Lau Basin, Southwestern Pacific  

Choi, Soon Young (Dokdo Research Center, East Sea Research Institute, Korea Institute of Ocean Science and Technology)
Kim, Chang Hwan (Dokdo Research Center, East Sea Research Institute, Korea Institute of Ocean Science and Technology)
Park, Chan Hong (Dokdo Research Center, East Sea Research Institute, Korea Institute of Ocean Science and Technology)
Kim, Hyung Rae (Department of Geoenvironment Sciences, Kongju National University)
Publication Information
Geophysics and Geophysical Exploration / v.21, no.2, 2018 , pp. 67-81 More about this Journal
Abstract
We acquired the magnetic and bathymetry data around the TA (Tofua Arc) 22 seamount in the Lau Basin for finding submarine hydrothermal deposits. From the data, we estimated the magnetic characteristics in the study area. The bathymetry shows that TA 22 seamount consists of the western and eastern summits. Each summit exhibits a caldera. The western caldera is smaller, but deeper than the eastern caldera. The slope gradients of the TA 22 are steeper around ~1000 m depth range and relatively gentle at the summit areas with the small difference of two calderas. The magnetic properties of TA 22 seamount present high anomalies at the summit and the vicinity of the caldera. Low magnetization zones appear over the outer flanks and center of the calderas. These magnetic patterns are similar to the previous studies which had represented high anomalies and low magnetization zones inside of the summit area or on the flank of the outside of the summit area. The results of the 2D magnetic forward modeling with seismic profiles show about 20 nT of RMSEs (root mean square error) between the modeled and observed values. The low RMSEs proposes a good correlation between the modeled 2D structure and the geophysical observation in this study area. Based on the modeling and magnetization distribution, hydrothermal deposits are predicted to be located at the inner area of the calderas or at small mounds around caldera rims.
Keywords
Lau basin; Magnetic anomaly; Submarine geotectonic; Hydrothermal deposit; Magnetic modeling;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Min, K. D., Seo, J. H., and Kwon, B. D., 1986, Applied Geophysics, Woosung Press, 135-227.
2 Alt, J. C., 1995, Subseafloor Precesses in Mid-Ocean Ridge Hydrothermal Systems, Seafllow Hydrothermal Systems: Physical, Chemical, Biological and Geological Interations, American Geophysics Union, 85-114, doi: 10.1029/GM091p0085.
3 Alvarenga, R. S., Lacopini, D., Kuchle, J., Scherer, C. M. S., and Goldberg, K., 2016, Seismic characteristics and distribution of hydrothermal vent complexes in the Cretaceous offshore rift section of the Campos Basin, offshore Brazil, Marine and Petroleum Geology, 74, 12-15, doi: 10.1016/j.marpetgeo.2016.03.030.   DOI
4 Arculus, R. J., 2005, Arc-backarc systems of northern Kermadec-Tonga, Proc. 2005 New Zealand Minerals Conference, 45-50.
5 Boschen, R. E., Rowden, A. A., Clark, M. R., and Gardner, J. P. A., 2013, Mining of deep-sea seafloor massive sulfides: A review of the deposits, their benthic communities, impacts from mining, regulatory frameworks and management strategies, Ocean & Coastal Management, 84, 54-67.   DOI
6 Blanco-Montegrro, I., De Ritis, R., and Chiappini, M., 2007, Imaging and modelling the subsurface structure of volcanic calderas with high-resolution aeromagnetic data at Vulcano (Aeolian Island, Italy), Bulletin of Volcanology, 69(6), 643-659.   DOI
7 Both, R., Crook, K., Taylor, B., Brogan, S., Chappell, B., Frankel, E., Liu, L., Sinton, J., and Tiffin, D., 1986, Hydrothermal chimneys and associated fauna in the Manus Back-Arc Basin, Papua New Guinea, EOS, Trans. American Geophysics Union, Abstracts, 67(21), 489-490.   DOI
8 Caratori Tontini, F., Davy, B., de Ronde, C. E. J., Embley, R. W., Leybourne, M., and M. A. Tivey, 2012, Crustal Magnetization of Brotheres Volcano, New Zealand, Measured by Autonomous Underwater Vehicles: Geophyscial Expression of a Submarine Hydrothermal System, Economic Geology, 107(8), 1571-1581.   DOI
9 Choi, S. G., 2014, Mineralogical Characteristics of the Hydrothermal Deposits at the TA25 Seamount in the Tofua Volcanic Arc, Southwestern Pacific, Ocean, Ph. M. Thesis, Chungbuk National University, 1-6.
10 Cocchi, L., Passaro, S., Tontini, F. C., and Ventura, G., 2017, Volcanism in slab tear faults is lagerthen in island-arcs and back arcs, Nature Communications, 13, doi: 10.1038/s41467-017-01626-w.
11 Craig, H., Craig, V. K., and Kim, K. R., 1986, PAPATUA Expedition 1: Hydrothermal vent surveys in back-arc basins: the Lau, N. Fiji, Woodlack and Manus Basins and Havre Trough, EOS, Trans. American Geophysics Union, Abstracts, 68, 100.
12 Craig, H., Horibe, Y., Farley, K. A., Welhan, J. A., Kim, K.-R., and Hey, R. N., 1987, Hydrothermal vents in the Mariana Trough; Results of the first Alvin dives, EOS, Trans. American Geophysics Union, Abstracts, 68(8), 1531.
13 Hawkins, J., 1986, "Black smoker" vent chimneys, EOS, Trans. American Geophysics Union, Abstracts, 67, 430, doi: 10.1029/95RG00296.
14 de Ronde, C. E. J., Massoth, G. J., Butterfield, D. A., Christenson, B. W., Ishibashi, J., Ditchburn, R. G., Hannington, M. D., Brathwaite, R. L., Lupton, J. E., Kamenetsky, V. S., Graham, I. J., Zellmer, G. F., Dziak, R. P., Embley, R. W., Dekov, V. M., Munnik, F., Lahr, J., Evans, L. J., and Takai, K., 2011, Submarine hydrothermal activity and gold-rich mineralization at Brothers volcano, Kermadec arc, New Zealand, Mineralium Deposita, 46(5-6), 541-584, doi: 10.1007/s00126-011-0345-8.   DOI
15 Fujii, M., Okino, K., Sato, T., Sato, H., and Nakamura, K., 2016, Origin of magnetic highs at ultramafic hosted hydrothermal systems: Insights from the Yokoniwa site of Central Indian Ridge, Earth Planet. Sci. Lett., 441, 26-37.   DOI
16 Gutscher, M.-A., Dominguez, S., de Lepinay, B., Pinheiro, L, Gallais, F., Babonneau, N., Cattaneo, A., Faou, Y. L., Barreca, G., Micallef, A., and Rovere, M., 2015, Tectonic expression of an active slab tear from high-resolution seismic and bathymetric data offshore Sicily (lonian Sea), Tectonisc, 35(1), 39-54, doi:10.1002/2015TC003898.
17 Hawkins, J., and Helu, S., 1986, Polymetallic sulphide deposits from "black smoker: chimney, Lau Basin, EOS, Trans. American Geophysics Union, Abstracts, 37, 378.
18 Honso, C., Tamaki, K., and Fujimoto, H., 1996, Three-dimensional magnetic and gravity studies of the Rodriguez Triple Junction in the Indian Ocean, J. Geophys. Res., 101(B7), 15837-15848, doi:10.1029/96JB00644.   DOI
19 Humphris, S. E., 1995, Hydrothermal precesses at mid-ocean ridges, Reviews of Geophysics, 33(S1), 71-80.   DOI
20 Ishibashi, J., and Urabe, T., 1995, Hydrothermal activity related to arc-backarc magmatism in the Western Pacific, in Taylor, B., ed., Backarc Basins: Tectonics and Magmatism, Plenum Press, New York, 451-495.
21 Intermagnet, 2018, http://www.intermagnet.org/ (May 17, 2018 Accessed).
22 James, W., and Hawkins, Jr., 1995, The Gology of the Lau Basins, in Taylor, B., ed., Backac Basic: Tectonics and Magmatism, Plenum Press, New York, 63-138.
23 Kennett, J. P. (Ed.), 1982, Marine Geology. Prentice Hall, Englewood Cliffs, New Jersey, 1-813.
24 Hansen, D. M., 2006, The morphology of intrusion-related vent structures and their implications for constraining the timing of intrusive events along the NE Atlantic margin, J. Geol. Soc., 163(5), 789-800.   DOI
25 Kim, C. H., 2014, Magnetic Characteristics of TA19-1 and TA19-2 Seamounts in the Lau Basin, the South Western Pacific, Econ. Environ. Geol., 47, 395-404.   DOI
26 Kim, C. H., Kim, H., Jeong, E. Y., Park, C. H., Go, Y. T., and Lee, S. H., 2009, A Study on the Hydrrothermal Vent in the Mariana Trench using Magnetic and Bathymetry Data. J. Korean Soc. Oceanography, 14, 22-40 (in Korean with English abstract).
27 Kim, H. J., Jou, H. T., Lee, G. H., Na, J. H., Kim, H. S., Jang, U. G., Lee, K. Y., Kim, C. H., Lee, S. H., Park, C. H., Jung, S. K., and Suk, B. C., 2013, Caldera structure of submarine Volcano #1 on the Tonga Arc at $21^{\circ}$09'S, southwestern Pacific: Analysis of multichannel seismic profiling, Earth Planets Space, 65(8), 893-900.   DOI
28 Kim, H. S., Jung, M.-S., Kim, C. H., Kim, J. U., and Lee, K.-Y., 2008, The Exploration Methodology of Seafloor Massive Sulfide Deposit by Use of Marine Geophysical Investigation, Geophys. and Geophys. Explor., 11(3), 167-176 (in Korean with English abstract).
29 Kubota, R., and Uchiyama, A., 2005, Three-dimension magnetization vector inversion of a seamount, Earth Planets Space, 57(8), 691-699.   DOI
30 KIOST, 2010, 2009 Exploration of deep sea hydtrothermal vent in Tonga, Korea Institute of Ocean Science & Technology, Seoul, 16.
31 Laske, G., Masters, G., Ma, Z., and Pasyanos, M., 2013, Update on CRUST 1.0 - A 1-degree Global Model of Earth's Crust, Geophys. Res., Abstracts, 15, 2013-2658.
32 Lelievre, P. G., and Oldenburg, D. W., 2009, A 3D total magnetization inversion applicable when significant, complicated remanence is present, Geophysics, 74(3), L21-L30.   DOI
33 Li, Y., and Oldenburg, D. W., 1996, 3D inversion of magnetic data, Geophysics, 61(2), 394-408.   DOI
34 Lide, D. R. (ed.), 2005, Magnetic Susceptibility of the Elements and Inorganic Compounds, CRC Handbook of Chemistry and Physics (86th ed.), CRC Press, Boca Raton, Florida, Section 4, 143-148.
35 Lille, R. J., 1999, Whole Earth Geophysics : An Introductory Textbook for Geologists and Geophysicists. Prentice Hall, New Jersey, 284-310.
36 Macleod, I. N., Vieira, S., and Chaves, A. C., 1993, Analytic Signal and Reduction-to-the-Pole in the Interpretation of Total Magnetic Field Data at Low Magnetic Latitudes, 3rd International Congress of the Brazilian Geophysical Society, Magnetics, 830-835.
37 Martinez, F., and Taylor, B., 2006, Modes of Crustal Accertion in Back-Arc: Inferences from the Lau Basin, Geophysical Monograph Series, 166, 5-30.
38 Morris, B., Ugalde, H., and Thomson, V., 2007, Magnetic remanence constraints on magnetic inversion model models, The Leading Edge, 26(8), 690-964.
39 Massoth, G., Baker, E., Worthington, T., Lupton, J., Ronde, C. D., Arculus, R., Walker, S., Nakamura, K.-I., Ishbashi, J.-I., Stoffers, P., Resing, J., Greene, R., and Lebon, G., 2007, Multiple hydrothermal sources along the south Tonga arc and Valu Fa Ridge, Geochem. Geophys. Geosyst., 8(11), doi:10.1029/2007GC00165, ISSN: 1525-2027.
40 Mcnutt, M., 1986, Nonuniform Magnetization of Seamounts: A Least Squares Approach, J. Geophys. Res., 91(B3), 3686-3700.   DOI
41 Mukhopadhyay, B., and Dasgupta, S., 2014, Genesis of a New Slab Tear Fault in the Indo-Australian Plate, Offshore Northern Sumatra, Indian Ocean, Journal Geologycal Society of India, 83, 493-500.   DOI
42 Nabighian, M. N., 1972, The Analytic signal of Two-Dimensional Magnetic Bodies with Polygonal Cross-Section: Its Properties and Use for Automated Anomaly Interpretation, Geophysics, 37(3), 507-517.   DOI
43 Napoli, R., Currrenti, G., and Del Negro, C., 2007, Internal structure of Ustica volcanic complex (italy) based on a 3D inversion of magnetic data, Bull. Volcanol., 69(8), 869-879.   DOI
44 Nirrengarten, M., Gernigon, L., and Manatschal, G., 2014, Lower crustal bodies in the More volcanic rifted margin: Geophysical determination and geology implications, Tectonophysics, 636, 143-157.   DOI
45 NOAA, 2012, http://oceanexplorer.noaa.gov/explorations/12fire/background/plan/plan.html/ (July 20, 2017 Accessed).
46 Okino, K., Nakamura, K., and Sato, H., 2015, Tectonic background of four hydrothermal fields along the Central Indian Ridge, in Ishibashi, J. K., Sunamura, M., Eds., Subseafloor Bioshpere Linked to Hydrothermal Systems, Spring Japan, 133-146.
47 Parson, L. M., and Hawkins, J. W., 1994, Two-state ridge propagationa and the geological history of the Lau backarc basin, in Proc. of the Ocean Drillign Program Scientific Results, 135, 9-22.
48 Oufi, O., Cannat, M., and Horen, H., 2002, Magnetic properties of variably serpentinized abyssal peridotites, J. Geophys. Res., 107(B5), 1-19.
49 Park, S. W., Lee, Y. H., and Kwon, M. S., 2003, A Study on the Considerations Relating to the Regulations for Prospecting and Exploration for Hydrothermal Polymetallic Sulphides and Cobalt-rich Ferromanganese Crusts in the Area, Ocean and Polar Research, 25(2), 227-235 (in Korean with English abstract).   DOI
50 Parker, R. L., and Huestis, S. P., 1974, The inversion of Magnetic Anomalies in the Presence of Topography, J. Geophys. Res., 79(11), 1587-1593.   DOI
51 Parson, L. M., and Wright, I. C., 1996, The Lau-Hevre-Taupo back-arc basin: A southward-propagating, multi-stage evolution from rifting to spreading, Tectonophysics, 263, 1-22.   DOI
52 Ross, P.-S., and Mercier-Langevin, P., 2014, The volcanic getting of VMS and SMS deposits: a review, Geoscience Canada, doi:10.12789/geocanj.2014.41.045.
53 Ruellan, E., Delteil, J., Wright, I., and Matsumoto, J., 2003, From rifting to activ spreading in the Lau Basin - Havre Trough backarc system (SW Paficic): Locking/unlocking induced by seamount chain subduction, Geochem. Geophys. Geosyst., 4(5), 8909, doi:10.1029/2001GC000261.
54 Sager, W. W., Lamarche, A. J., and Kopp, C., 2005, Paleomagnetic modeling of seamounts near the Hwaiian-Emperor bend, Tectonophy., 405(1-4), 121-140.   DOI
55 Searle, R. C., Murton, B. J., Achenbach, K., Lebas, T., Tivey, M., Yeo, I., Cormier, M. H., Carlut, J., Ferreira, P., Mallows, C., Morris, K., Schroth, N., Calsteren, P., and Waters, C., 2010, Structure and development of an axial volcanic ridge: Mid-Atlantic Ridge, $45^{\circ}N$, Earth Planet. Sci. Lett., 299(1-2), 228-241.   DOI
56 Sato, T., Okino, K., and Kumagai, H., 2009, Magnetic structure of an oceanic core complex at the southernmost Central Indian Ridge: analysis of shipborad and deep-sea threecomponent magnetometer data, Geochem. Geophys. Geosyst., 10(6), Q06003, doi:10.1029/2008GC002267.
57 Schellart, W. P., Lister, G. S., and Toy, V. G., 2006, A Late Cretacerous and Cenozoic reconstruction of the Southwest Pacific region: Tectonics controlled by subduction and slab rollback processes, Earth-Science Reviews, 76(3-4), 191-223, doi:10.1130/G35729.1.   DOI
58 Schouten, H., Tivey, M. A., Fornari, D. J., and Cochran, J. R., 1999, Central anomaly magnetization high: constraints on the volcanic construction and architecture of seismic layer 2A at a fast-spreading mid-ocean ridge, the EPR at $9^{\circ}$30'-50'N, Earth Planet. Sci. Lett., 169(1-2), 37-50.   DOI
59 Shanks, W. C. Pat, III., and Thurston, R. (eds.), 2012, Volcanogenic Massive Sulfides Occurrence Model, Scientific Investigations Report 2010-5070-C, U.S. Geological Survey, Reston, Virginia, 61-131.
60 Shearer, S., and Li, Y., 2004, 3D inversion of magnetic total gradient data in the presence of remanent magnetization, 74th Annual International Meeting, SEG, Expanded Abstracts, 774-777.
61 Szitkar, F., Dyment, J., Fouquet, Y., Honsho, C., and Horen, H., 2014, The magnetic signature of ultramafic-hosted hydrothermal sites, Geology, 42(8), 715-718.   DOI
62 Tivey, M. A., Rona, P. A., and Kleinrock, M. C., 1996, Reduced crustal magnetization beneath relict hydrothermal mounds: TAG hydrothermal field, Mid-Atlantic Ridge, $26^{\circ}N$, Geophys. Res. Lett., 23, 3511-3514.   DOI
63 Szitkar, F., Tivey, M. A., Kelley, D. S., Karson, J. A., Fruh-Green, G. L., and Denney, A. R., 2017, Magnetic exploration of a low-temperature ultramafic-hosted hydrothermal site (Lost City, $30^{\circ}N$, MAR), Earth Planet. Sci. Lett., 461, 40-45.   DOI
64 Timm, C., Bassett, D., Graham, I. J., Leybourne, M. I., de Ronde, C. E. J., Woodhead, J., Layton-Matthews, D., and Watts, A. B., 2013, Louisville seamount subduction and its implication on mantle flow beneath the central Tonga-Kermadec arc, Nat. Commun., 4, doi:10.1038/ncomms2702.
65 Tivey, M. A., Rona, P. A., and Schouten, H., 1993, Reduced crustal magnetization beneath the active sulfide mound, TAG hydrothermal field, Mid-Atlantic Ridge at $26^{\circ}N$, Earth Planet. Sci. Lett., 115(1-4), 101-115.   DOI
66 Tivey, M. A., and Johnson, H. Paul., 2002, Crustal magnetization reveals subsurface structure of Juan de Fuca Ridge hydrothermal vent fields, Geology, 30(11), 979-982.   DOI
67 Tivey, M. A., and Schouten, H + Martin C. kleinrock, 2003, A near-bottom magnetic survey of the Mid-Atlantic Ridge axis at $26^{\circ}N$: Implications for the tectonic evolution of the TAG segment, J. Geohys. Res., 108(B5), 2277, doi:10.1029/2002JB001967.
68 Tivey, M. A., Paul Johnson, H., Salmi, M. S., and Hutnak, M., 2014, High-resolution near-bottom voctor magnetic anomalies over Raven Hydrothermal Field, Endeavour Segment, Juan de Fuca Ridge, J. Geophys. Res., 119(10), doi:10.1002/2014JB011223.
69 Urabe, T., 1987, Kuroko deposit modeling based on magnetic hydrothermal theory, Mining Geol., 37, 159-176.
70 Wang, M., Di, Q., Xu, K., and Wnag, R., 2004, Magnetization vector inversion equations and forward and inverse 2-d model study, Chinese Journal of Geophysics, 47(3), 601-609.   DOI
71 Yucel, M., Gartman, A., Chan, C. S., and Luther III, G. W., 2011, Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean, Nature Geoscience, 4, doi:10.1038/NGO1148.
72 Zellmer K., and Taylor, B., 2001, A three-plate kinematic model for Lau Basin opening, Geochem. Geophys. Geosyst., 2, 200GC00106, ISSN: 1525-2027.
73 Zhu, J., Lin, J., Chen, Y. J., Tao, C., German, C. R., Yoerger, D. R., and Tiviey, M. A., 2010, A reduced crustal magnetization zone near the first observed active hydrothermal vent on the Southwest Indian Ridge, Geophys. Res. Lett., 37(18), L18303, doi:10.1029/2010GL043542.   DOI