• Title/Summary/Keyword: 라디칼 생성율

Search Result 109, Processing Time 0.022 seconds

Verification of the effect of Potentillae Chinensis Chinensis Herba extract and bioconversion fraction on chronic respiratory diseases (위릉채 추출물 및 생물전환 분획물의 만성호흡기 질환 효과 검증)

  • Dong-Hee Kim;Bo Ae Kim;Yun-Hwan Kang
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.1454-1463
    • /
    • 2023
  • Evaluating the antioxidant efficacy using Potentillae Chinensis Herba extract, the anti-inflammatory efficacy was tested in respiratory mucosal epithelium, RAW264.7 cells, and zebrafish. As a result, antioxidant activity increased in a concentration-dependent manner in DPPH free radical scavenging and ABTS+ cation radical activities. As a result of MTT assay for cell experiments, the survival rate of NCI-H292 cells was reduced to less than 70% when treated at each concentration of 100 ㎍/ml, subsequent experiments were conducted at 50 ㎍/ml. Anti-inflammatory efficacy evaluation, NO production, TNF-𝛼, IL-1𝛽, and PGE2 decreased, and COX-2 also decreased significantly at 50 ㎍/ml. The mucin protein expression of Potentillae Chinensis Herba extract and bioconverted extract, it was observed that MUC5AC expression was significantly reduced. In the zebrafish toxicity evaluation, concentrations below 50 ㎍/ml did not show embryotoxicity and showed anti-inflammatory efficacy by reducing NO production due to LPS. The above results are valid to be valuable for use as a functional material that suppresses inflammation by helping the expression of Potentillae Chinensis Herba's respiratory mucus proteins.

Free Radical Scavenging Effect and Oxidative Stress Protective Activity of Domestic Processed Polygoni Multiflori Radix (국내산 법제 하수오의 라디칼 소거능 및 산화적 스트레스 개선 효과)

  • Kim, Hyun Young;Kim, Jun Young;Cho, Eun Ju;Choi, Ji Myung;Hwang, Chung Eun;Lee, Hee Yul;Ahn, Min Ju;Lee, Jin Hwan;Kim, Yun-Geun;Ko, Keon Hee;Goo, Young-Min;Oh, Kyeong Yeol;Cho, Kye Man
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.6
    • /
    • pp.809-815
    • /
    • 2015
  • In this study, we confirmed biological compounds from methanol (MeOH) extract of processed Polygoni Multiflori Radix (PPMR), and the radical scavenging effect and oxidative stress protective activity of MeOH extract of PPMR were investigated under in vitro conditions using LLC-$PK_1$ renal epithelial cells. In HPLC analysis, MeOH extract of PPMR contained four species of biological compounds named 2,3,5,4'-tetrahydroxystilbene 2-O-${\beta}$-D-glucoside, emodin, chrysophanol, and rhein. 2,3,5,4'-Tetrahydroxystilbene 2-O-${\beta}$-D-glucoside was detected as the main compound in PPMR as 115.02 mg/kg. MeOH extract of PPMR showed 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) diammonium salt (ABTS), and hydroxyl radical scavenging activities in a concentration- dependent manner. In particular, upon $50{\mu}g/mL$ of PPMR extract treatment, DPPH, ABTS, and hydroxyl radical scavenging activities were approximately 48.4%, 57.9%, and 81.2%, respectively. LLC-$PK_1$ cell viability declined in response to oxidative stress induced by pyrogallol, sodium nitroprusside (SNP), and morpholinosydnonimine (SIN-1) generators of NO, $O_2{^-}$, and $ONOO^-$, respectively. However, MeOH extract of PPMR significantly and dose-dependently inhibited oxidative-stressed LLC-$PK_1$ cell cytotoxicity. In fact, upon $50{\mu}g/mL$ of PPMR extract treatment, LLC-$PK_1$ cell viabilities were approximately 82.1%, 89.1%, and 77.6% compared to stress levels induced by pyrogallol, SNP, and SIN-1, respectively.

Physiological Study of the Extract of Junglans nigra Shells for the Cosmeceutical Application (코스메슈티컬 적용을 위한 흑호두 과피의 생리학적 연구)

  • Lee, Hyun Ju;Ohk, Seung-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.29-36
    • /
    • 2021
  • Among natural products, the shells of black walnut(Juglans nigra), which are not used commercially and mostly discarded, were examined to investigate the physiological activity and the efficacy for the cosmetic application. DPPH radical scavenging activity of hot water extract of black walnut shells was 76.06% at 300 ㎍/mL. ABTS radical scavenging activity of the extract was 61% at 1000 ㎍/mL, showing excellent antioxidant activity. When the black walnut shell extract was applied to HaCaT cells, a skin keratinocyte, the viability of the cells was 92.6% at 250 ㎍/mL, showing a remarkably low effect on cell viability. At the concentration of 500 ㎍/mL, 67.35% of nitric oxide(NO) production was inhibited. It also showed an inhibitory effect on Hyaluronidase 31 times higher than that of Vitamin C at 100 ㎍/mL concentration. In conclusion, the black walnut shell extract showed high potentials for the cosmeceutical applications, suggesting the possibility of using it as a high value-added natural material in various industries such as food, fragrance, healthcare, and pharmaceuticals.

The Effects of Phenolic Radical Carriers on the Enzymatic. Bleaching of Kraft Pulp (Kraft펄프의 효소표백반응에 미치는 페놀라디칼 전달체의 영향)

  • 류근갑
    • KSBB Journal
    • /
    • v.10 no.2
    • /
    • pp.183-190
    • /
    • 1995
  • The effects of enzymatic pretreatments on the bleaching of kraft pulp were studied. The kappa number of pulp samples which represents the lignin content of pulp decreased by 25.2% by the pretreatments with xylanase(EC 3.2.1.8, Pulpzyme HB) while it decreased by 13.7% without enzyme pretreatments after the extraction of the pretreated pulp samples in 1N NaOH. To enhance the effects of enzymatic pretreatment on the bleaching of kraft pulp, phenols were used as radical carriers with the simultaneous use of peroxidase(EC 1.11.1.7, Novozyme 502), $H_2O_2$, and xylanase. Guaiacol (1mM) was most effective by decreasing the kappa number by 29.6% when a low initial concentration of $H_2O_2$ (0.1mM) was used. The use of either a higher initial concentration of $H_2O_2$ or phenols lacking electron donating substituents such as phenol and p-chloyophenol, however, decreased the efficiency of enzymatic pretreatment indicating that the production rate and the stability of phenolic radicals are important parameters.

  • PDF

Evaluation Antioxidant and Anti-inflammatory Activity of Ethanolic Extracts of Myriophyllum spicatum L. in Lipopolysaccharide-stimulated RAW 264.7 Cells (이삭물수세미(Myriophyllum spicatum L.) 에탄올 추출물의 항산화와 항염증 효과)

  • Chul Hwan Kim;Young-Kyung Lee;Min Jin Kim;Ji Su Choi;Buyng Su Hwang;Pyo Yun Cho;Young Jun Kim;Yong Tae Jeong
    • Korean Journal of Plant Resources
    • /
    • v.36 no.1
    • /
    • pp.15-25
    • /
    • 2023
  • Myriophyllum spicatum L. has been used as an ornamental in ponds and aquariums, and as a folk remedy for inflammation and pus. Nevertheless, the biological activity and underlying mechanisms of anti-inflammatory effects are unclear. This study is aimed at investigating the antioxidative and anti-inflammatory activities of ethanol extract of Myriophyllum spicatum L. (EMS) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Antioxidant activity of EMS was assessed by radical-scavenging effects on ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals. As inflammatory response parameters produced by LPS-stimulated RAW 264.7 cells were quantified to assess the anti-inflammatory activity of EMS. Our results showed that EMS increased FRAP and DPPH radical-scavenging activity. In EMS-treated RAW 264.7 cells, the production of NO, PGE2, TNF-α and IL-1β was significantly inhibited at the non-cytotoxic concentration. In addition, EMS significantly attenuated LPS-stimulated the toll-like receptor (TLR) 4/myeloid differentiation protein (MyD) 88 signaling pathway, and inhibited nuclear translocation of nuclear factor-kappa B(NF-κB). Positive correlations were noted between anti-inflammatory activity and antioxidant activity. In conclusion, it was indicated that EMS suppresses the transcription of inflammatory factors by inhibiting the TLR4/MyD88/NF-κB signaling pathway, thereby suppressing LPS-stimulated inflammation in RAW 264.7 cells. This study highlights the potential role of EMS against inflammation and associated diseases.

Antioxidant and nitric oxide inhibition effect of domestic and foreign fermented black tea extracts (국내외 홍차 추출물의 항산화 효과 및 Nitric Oxide 생성 저해 효과)

  • Moon, Gyo-Ha;Kim, Gyeong-Ji;Lee, Yu-Rim;Kim, Jong Cheol;Shim, Doobo;Chung, Kang-Hyun;Lee, Kwon-Jai;An, Jeung Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.4
    • /
    • pp.454-462
    • /
    • 2021
  • This study investigated the antioxidant and nitric oxide (NO) inhibition effects of three domestic and seven foreign fermented black tea 70% ethanol extracts. Bosung showed the highest total polyphenol and tannin contents. Jeju showed the highest total flavonoid contents. The theanine content was higher in Hadong (651.50 mg%) than in foreign fermented black tea. At 25 ㎍/mL, the domestic fermented black tea extract showed the highest DPPH and ABTS racial-scavenging activities, reducing power assays. Domestic fermented black tea showed higher NO inhibitor activity than foreign black tea at 50 ㎍/mL. Bosung black tea extract showed an increase in SOD-1 level (1.39-fold) compared to the LPS-only group. Bosung and Jeju decreased the GST protein by 1.52- and 1.46-folds, respectively, compared to the LPS-only group. Thus our results suggest that domestic fermented black tea (Bosung, Jeju, and Hadong) are effective antioxidants in RAW 264.7 cells.

Characterization of Diethyl Phthalate(DEP) Removal using Ozone, UV, and Ozone/UV Combined Processes (오존, UV, 오존/UV 혼합 공정을 이용한 Diethyl Phthalate(DEP)의 제거특성 연구)

  • Jung, Yeon-Jung;Oh, Byung-Soo;Kang, Joon-Wun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.137-143
    • /
    • 2006
  • Three candidate processes(ozone alone, UV alone and ozone/UV combined processes) were evaluated for the removal of diethyl phthalate(DEP). Of the candidates, the ozone/UV process showed the highest removal efficiency of DEP. To elucidate a major oxidant for DEP oxidation in the ozone/UV process, the effects of pH and hydroxyl radical($OH^{\circ}$) scavenger were investigated. As a result, it was found that $OH^{\circ}$ plays a important role for DEP elimination. Meanwhile, the direct reaction between ozone and DEP was negligible. Observing the pseudo first-order rate of DEP removal in ozone alone and ozone/UV processes, the different pattern was obtained from two processes. The ozone/UV process was well plotted following the pseudo first-order. but in the ozone alone process the rate was divided into fast and slow phases. DEP degradation characteristics in ozone alone and ozone/UV was also investigated by observing the HPLC spectrum. We detected unknown compounds that were guessed to DEP byproducts and observed the formation and disappearance of the unknown compounds according to reaction time. Observing of high removal of TOC in ozone/UV combined process, it was found that DEP and DEP byproducts are completely oxidized by ozone/UV combined process.

Electrochemical Decomposition Characteristics of Ammonia by the Catalytic Oxide Electrodes (촉매성 산화물 전극에 의한 암모니아의 전기 화학적 분해 특성)

  • Kim, Kwang-Wook;Kim, Young-Jun;Kim, In-Tae;Park, Gun-Ill;Lee, Eil-Hee
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.9-15
    • /
    • 2005
  • In order to know the electrochemical decomposition characteristics of ammonia to nitrogen, this work has studied several experimental variables on the electrolytic ammonia decomposition. The effects of pH and chloride ion at $IrO_2$, $RuO_2$, and Pt anodes on the electrolytic decomposition of ammonia were compared, and the existence of membrane equipped in the cell and the changes of the current density, the initial ammonia concentration and so on were investigated on the decomposition. The performances of the electrode were totally in order of $RuO_2{\approx}IrO_2>Pt$ in the both of acid and alkali conditions, and the ammonia decomposition was the highest at a current density of $80mA/cm^2$, over which it decreased, because the adsorption of ammonia on the electrode surface was hindered due to the evolution of oxygen. The ammonia decomposition increased with the concentration of chloride ion in the solution. However, the increase became much dull over 10 g/l of chloride ion. The $RuO_2$ electrode among the tested electrodes generated the most OH radicals which could oxidized the ammonium ion at pH 7.

Removal of COD and Color from Anaerobic Digestion Effluent of Livestock Wastewater by Advanced Oxidation Using Microbubbled Ozone (마이크로버블 오존 고도산화를 이용한 축산폐수 혐기소화 배출수의 COD와 색도의 제거)

  • Lee, Inkyu;Lee, Eunyoung;Lee, Hyejung;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.617-622
    • /
    • 2011
  • Ozone-based advanced oxidation was applied for the treatment of anaerobic digestion effluent of livestock wastewater. Initial COD and color value were 930 mg/L and 0.04, respectively, and the 1/10-diluted wastewater was used for the study. The treatment characteristics were compared between the conventionally generated ozone ($105{\mu}m$) and microbubbled ozone ($13{\mu}m$). The use of microbubbled ozone improved the removal of chemical oxygen demand (COD) and color by 85% and 26%, respectively, compared with the conventionally bubbled ozone. The application of microbubbled $O_3/UV$, $O_3/H_2O_2$, $O_3/UV/H_2O_2$ combinations resulted in 5~10% higher color removal than ozone alone, which implies that the contribution of UV or $H_2O_2$ is not significant in color removal. On the other hand, COD removal could be increased two folds compared with ozone alone through $O_3/UV/H_2O_2$ combination. The contribution of $H_2O_2$ was bigger than UV for COD removal with microbubbled ozone. Due to the enhancement of dissolved ozone and radical activity, the microbubbling enabled us to additional COD removal even after stopping ozone supply in the presence of UV or $H_2O_2$.

Nutritional composition, antioxidant capacity, and brain neuronal cell protective effect of cultivars of dried persimmon (Diospyros kaki) (품종별 곶감(Diospyros kaki)의 영양성분 분석, 산화방지 효과 및 뇌 신경세포 보호효과)

  • Kim, Jong Min;Park, Seon Kyeong;Kang, Jin Yong;Park, Sang Hyun;Park, Su Bin;Yoo, Seul Ki;Han, Hye Ju;Lee, Su-Gwang;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.2
    • /
    • pp.225-237
    • /
    • 2018
  • This study was conducted to compare nutritional analysis and neuroprotective effect of 5 cultivars of Diospyros kaki (Dungsi, Godongsi, Gojongsi, Gabjubaekmok, and Bansi). In nutritional analysis, three free sugars: sucrose, glucose, and fructose, and six fatty acids: tartaric acid, hexadecanoic acid, palmitic acid, oleic acid, octadecenamide, and octadecane, were detected. Potassium and phosphorus levels were the highest in inorganic component analysis, and glutamic acid and aspartic acid were the highest contents in amino acid analysis. Vitamin C was detected in all cultivars. Total phenolic content was the highest in Dungsi. Antioxidant activities such as ABTS (3-ethylbenzothiazoline-6-sulfonic acid), DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activities, FRAP (ferric reducing/antioxidant power), and MDA (malondialdehyde) inhibitory effect were the highest in Gabjubaekmok. Acetylcholinesterase inhibitory activity, cell viability, intracellular reactive oxygen species (ROS) accumulation, and lactate dehydrogenase (LDH) release were measured to confirm the neuroprotective effect in MC-IXC cells. Gabjubaekmok showed significant acetylcholinesterase (AChE) inhibition and neuroprotection.