• 제목/요약/키워드: 라돈가스 흡착

검색결과 15건 처리시간 0.025초

활성백토를 흡착재로 활용한 경화체의 실내 공기 개선 평가 (Evaluation of Indoor Air Improvement of Matrix Using Activated clay as Adsorption Material)

  • 정현수;김연호;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.189-190
    • /
    • 2020
  • The importance of indoor air quality management has recently been highlighted due to environmental problems such as indoor air pollution. Among indoor air pollutants, carbon dioxide occurs in cooking, heating, burning, and causes forgetfulness, dementia and amnesia. Radon, which occurs in building materials, soil and ground, is a type 1 carcinogen that causes lung cancer in the body through breathing. These substances can be released from the room through ventilation, but there is a limit to reducing the amount of indoor activity due to reduced ventilation conditions due to increased indoor activity time. However, these substances can be removed from the gas by adsorption. The purpose of this study was to identify the properties of granular active and powdered active white soil and mix them to make cement-based active white soil adsorbent matrix for carbon dioxide, fine dust and radon gas adsorption, and to evaluate indoor air improvements according to the mixing scale. The results of the experiment showed that active carbon dioxide adsorption performance increased for carbon dioxide and radon as the exchange rate increased through physical adsorption. In particular, the higher the replacement rate of the granular active bag, the better adsorption performance was shown.

  • PDF

벤토나이트를 활용한 산화마그네슘 경화체의 친환경성 및 열저항 특성 (Eco-Friendly and Thermal Conductivity Properties of Magnesium oxide Matrix Utilizing Bentonite)

  • 권오한;임현웅;이동훈;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 추계 학술논문 발표대회
    • /
    • pp.64-65
    • /
    • 2016
  • This study that prevent cancer using absorbent to inflow Radon gas in the room existing soil and rock is making board to absorb the Radon gas as a fundamental study. So, we use bentonite as a absorbent. So, we use bentonite as a absorbent. Bentonite is a 'clay mineral' composed to montmorillonite of main component that volcanic ash denatured to a clay mineral. Bentonite has fine microparticle of nano level, abundant mineral 66 of kinds, adsorbability, swelling, a positive ion(heavy metal adsorption reaction) as a bentonite's property. Using magnesia cement for oxide of magnesiuma and magnesium chloride as a main binder, we measure Radon gas absorbent efficiency and thermal conductivity.

  • PDF

안트라사이트 입도에 따른 시멘트 경화체의 공기량 및 유동성 특성 (Air Content and Fluidity Properties of Cement Matrix according to Anthracite Particle-size)

  • 경인수;편수정;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 추계 학술논문 발표대회
    • /
    • pp.92-93
    • /
    • 2017
  • Recently, there has been an increasing interest in natural radioactive gas radon(Rn-222), the problem of indoor air quality pollution to worldwide. It has been scientifically proven to be hazardous to various diseases such as lung cancer and skin cancer if the human body is exposed to long-term accumulation of atomic nuclei due to the destruction of radon and alpha lines. Based on the indoor air quality control policy, this study is a basic experiment in the manufacture of a selective elimination function to containing radon adsorption and reduction of radon concentration, which is used to absorb radioactive isotopes such as phosphorus and radon in indoor environment.

  • PDF

안트라사이트를 혼입한 시멘트 보드의 라돈흡착 특성 (Radon adsorption properties of cement board using anthracite)

  • 경인수;편수정;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.232-233
    • /
    • 2018
  • Among the recent environmental pollution, indoor air pollution has an adverse effect on the health of indoor residents. Radon, one of the causes of indoor air pollution, is released from concrete, gypsum board and asbestos slate among building materials. Radon is a primary carcinogen and is a colorless, tasteless, odorless inert gas that adheres to airborne dust and enters the body through breathing. At this time, there is a risk of developing cancer if the alpha rays from the lononggas entering the human body destroys the lung tissue and is continuously exposed to a high concentration of lonon gas. The World Health Organization (WHO) has emphasized the reduction of radon and its exposure to radon by classifying it as a first-level carcinogen, but many people have not recognized it yet, and the research is underdeveloped. Therefore, this study was carried out to investigate the properties of adsorbed coconut radon to prevent the inflow of radon gas, which is an air pollution source of indoor air, and to prevent inflow into the human body.

  • PDF

부산시 금정구 일대 암석 및 토양에서 일부 환경방사성 핵종들의 분포 특성 (Distribution of Some Environmental Radionuclides in Rocks and Soils of Guemjeong-Gu Area in Busan, Korea)

  • 이효민;문기훈;김진섭;안정근;김현철
    • 암석학회지
    • /
    • 제17권3호
    • /
    • pp.179-190
    • /
    • 2008
  • 부산 금정구일대의 암석, 토양 및 토양가스 내 주요 환경방사성 핵종들($^{40}K$, $^{228}Ac$, $^{226}Ra$, $^{222}Rn$) 및 U의 분포 특성에 대하여 연구하였다. 연구지역의 화강암질 암석들에서 환경방사성 핵종들의 방사능은 $^{40}K$>토륨붕괴계열>우라늄붕괴계열 순으로 낮게 나타나 화강암질 암석에서 U에 비해 Th이 상대적으로 많이 부화됨을 잘 나타내고 있다. 그러나 암석 내 U 농도 및 $^{226}Ra$ and $^{228}Ac$ 방사능은 암석의 분화단계를 잘 반영하지 못하고 있다. 잔류토양 내 환경방사성 이 핵종들의 방사능과 U의 농도는 모암에 비해 높게 나타나며. 토양가스, 토양 및 암석에서 환경방사성 핵종들의 분포는 낮은 정의 상관관계를 보인다. 이러한 사실들은, 토양가스 및 토양에서 환경방사성 핵종들의 방사능은 모암에 의한 영향보다, 암석의 풍화작용과 토양형성작용 동안 이들 핵종들과 모핵종들의 용탈 및 흡착 등의 거동 특성에 의한 영향을 더 크게 받음을 시사한다.