• Title/Summary/Keyword: 라돈가스

Search Result 62, Processing Time 0.222 seconds

Radon Gas Problems and Solutions through Case Analysis (라돈가스의 문제점과 사례분석을 통한 해결방안)

  • Song, Hojae;Kim, Geunyoung;Lee, Aleum;Choi, Yongju;Nam, Kyoungphile;Park, Junboum
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • 본 연구에서는 라돈가스의 환경적 문제점을 구체적으로 파악하였다. 각 나라별 라돈가스 환경문제 사례 분석을 통하여 국가별 라돈 가스 농도와 위험도를 조사하였다. 환경적 문제가 되는 라돈가스 유입의 방지법을 조사 및 연구하여 소개한다

Evaluation of Decreasing Concentration of Radon Gas for Indoor Air Quality with Magnesium Oxide Board using Anthracite (안트라사이트를 활용한 산화마그네슘 보드의 실내 공기질 중 라돈가스 농도 저감 평가)

  • Pyeon, Su-Jeong;Lim, Hyun-Ung;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • Radon gas, which is present on the earth, is a primary carcinogen released from rocks, soil, building materials, etc., and exists as a unique gas phase. In order to solve the risk of radon gas, we evaluated the basic performance which can be used as indoor finishing materials in addition to the radon gas reduction properties of the matrix using anthracite. An anthracite used as a conventional filter material was used to produce a matrix, and a test was conducted to replace the gypsum board, which is one of the building materials used in the existing room. As the anthracite replacement ratio increases, flexural failure load strength increases and thermal conductivity tends to decrease. Depending on the thickness of the board, the reduction performance of radon gas shows a slight difference.

Pore Characterisitics and Adsorption Performance Evaluation of Magnesium Oxide Matrix by Active Carbon Particle Size (활성탄소 입도에 따른 산화마그네슘 경화체의 공극특성과 흡착성능 평가)

  • Pyeon, Su-Jeong;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.1
    • /
    • pp.59-65
    • /
    • 2018
  • Radon gas is a colorless, odorless, tasteless gas that occurs when uranium, a natural radioactive material in rocks and soils, collapses. 85% of the annual radiation exposure of the human body is due to natural radiation, of which 50% is radon. According to the US Environmental Protection Agency (EPA) survey, 62 out of 1,000 smokers and 7 out of 1,000 nonsmokers are exposed to lung cancer when exposed to radon gas for a long time. In order to reduce the risk of radon gas, activate carbon was used to fabricate matrix, and the pore properties and radon reduction properties were investigated. When the activate carbon was used, the radon gas concentration was drastically reduced and the graph was changed as the measurement period became longer. The pore distribution and microporous properties, which are one of the material properties of activate carbon, can be grasped.

Radon Concentration at N-Kindergarten in G-City (G광역시 N유치원의 라돈 농도)

  • Park, Yun;Kim, Wonjun
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.6
    • /
    • pp.421-424
    • /
    • 2015
  • In this study, To subject the constructed at N-kindergarten in G-city, the position is closed window and opened window was measured using a measuring instrument for radon. The measured results indicate that the measurement was carried out in concentrations of radon gas measured at N-kindergarten is low than United States in the radon concentration in air public 4pCi called radon gas baseline maximum allowable concentrations. As a result, radon exposure is not a problem, but when the accumulation radon gas in the lungs, get damaged same lung cancer. Be defensive of kindergarten windows open for ventilation and dust removal be possible to reduce the exposure.

Radon Reduction Performance of Adsorbent for Making Radon-Reducing Functional Board (라돈 저감형 기능성 보드제작을 위한 흡착재의 라돈 저감 성능)

  • Kim, Ki-Hoon;Pyeon, Su-Jeong;Kim, Yeon-Ho;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.2
    • /
    • pp.139-147
    • /
    • 2019
  • In this study, an experiment was conducted to evaluate the properties of cement matrix using diatomite and silica gel as adsorbents of radon. The adsorption properties of diatomite of a natural adsorbent and silica gel of an artificial sorbent were examined to confirm the reduction of radon gas concentration of the removal of radon gas in the indoor environment of the human body. We conducted a performance evaluation for the study. The fluidity, air content, density, absorption, flexural failure load, thermal conductivity and radon gas concentration of the specimen using diatomite and silica gel were measured. the fluidity and the air content of the adsorbed matrix with diatomite were decreased as the diatomite replacement ratio increased. Which seems to affect the subsequent matrix by the absorption of the compounding water of diatomite. As the replacement rate of silica gel increased, the fluidity decreased and the air content increased up to constant replacement rate. It is judged that the surface of the silica gel has a critical point at which it can react with moisture.

Properties of Radon Gas Absorption of Matrix According to Types of Absorbent (흡착재의 종류에 따른 경화체의 라돈가스흡착 특성)

  • Gwon, Oh-Han;Lim, Hyun-Ung;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.15-21
    • /
    • 2017
  • WHO reported that millions of people die every year because of diseases induced from environmental pollution. In 2012, approximately 7 million people were killed due to air pollution. Major cause of such pollution includes toxin, chemical waste, radiation and air pollution. Therefore, the significance and interest to indoor air quality has been continuously increased. Especially, the interest in radon, the ARC group 1 carcinogen, is rapidly increasing, and banning the use of construction materials that release radon, repairing aged buildings, and developing ventilators. To reduce the level of radon gas was inflowed to indoors and outdoors, this study is to research and develop a radon gas absorption board using absorbents. The absorbents utilized to absorb the radon gas were porous diatomite, natural zeolite, 4A zeolite and 13X zeolite and employed bentonite and illite, montmorillonites with the property of exchanging anions. As the main binder, magnesium oxide was used, with a content of 25% magnesium chloride.

Elementary School in Gwangju Gwangsan Radon gas Density Measurement (광주광역시 광산구 소재 초등학교 라돈가스 농도 계측)

  • Ahn, Byungju;Oh, Jihoon
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.4
    • /
    • pp.211-216
    • /
    • 2014
  • Radium is rock or soil of crust or uranium of building materials after radioactivity collapse process are created colorless and odorless inert gas that accrue well in sealed space like basement. It inflow to lung circulate respiratory organ and caused lung cancer because of deposition of lung or bronchial tubes. In this study, the air in the elementary school classroom nongdoeul tonkatsu place of measured values were compared using the calculated annual internal radiation exposure. La tonkatsu exposure measured in primary school classroom at least five schools when you close the windows in the average floor 0.56mSv 2 floors ground floor windows when opened 0.384mSv 048mSv 3 floors, 2 floor levels of the same three layers 0.31mSv 0.296mSv the human exposure to radon and radiation on the first floor of 3 floors above ground in a lot of exposure was moderate. When you close the window from the first floor up 0.384mSv 056mSv 3 floors with a minimum annual radiation exposure due to natural radiation in the 16 to 23.3 percent minimum 2.4mSv accounted for. When I opened the window to the maximum annual radiation exposure 2.4mSv 0.296mSv 0.31mSv least a minimum of 12.3 to 12.91% accounted for Results suggest that more than five chodeunghakgyoeun La tonkatsu domestic radon measurements conducted below regulatory requirements and internal exposure has also fall within the normal range. People The less the radiation exposure to the human body because it reduces the impact in the classroom in elementary school vent windows often reduced to the maximum radon concentration in the air, if called tonkatsu be able to reduce radiation exposure for the immune system is weak and elementary will be helpful to experiment more in the future for the school authorities called tonkatsu investigation is done to him if the action to establish a more secure school building facilities is thought would be helpful.

Measurement of Rn-222 Gas Concentration of Newly Constructed Apartment House in Gwangju Gwangsan-Gu (광주광역시 광산구 소재 신축 아파트 라돈가스 농도 계측)

  • Jang, Hee jun;Lee, Sang bock
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.257-261
    • /
    • 2015
  • Radon is produced after the Uranium-238 and thorium-232 undergone radioactive decay process is a colorless, odorless inert gas is stored in a basement or an enclosed space. Building materials are made by a rock or soil materials. Form of radon gas is introduced into the lungs through the respiratory tract and deposited in the lungs or bronchial Daughter nuclides radon causes lung cancer. In this study, To subject the Constructed Apartment in Gwangju Gwangsan-Gu, the position is closed window and opened window was measured using a measuring instrument for radon. The measured results indicate that the measurement was carried out in concentrations of radon gas measured at Newly Constructed Apartment is low than United states in the radon concentration in air public 4 pCi called radon gas baseline maximum allowable concentrations. The exposure caused by radon concentration of new construction apartment when on the measurement results is expected to be insignificant. However, when radon gas like this is that it accumulates in the body and lungs get damaged due to exposure, such as lung cancer often open the windows to reduce the radon concentration measurements, such as in radiation protection aspects to the ventilation to reduce exposure it is considered necessary.

Study on the Ventilation Effect in the Two Compartment Model for Indoor Radon Pollution (실내라돈오염을 위한 2구역 모델에서의 환기영향평가)

  • 유동한;김상준;양지원
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.237-238
    • /
    • 2001
  • 라돈(Rn-222)은 우라늄(U-238) 방사능계열의 원소로서 라듐(Ra-226)의 알파($\alpha$)붕괴시 자연생성되는 가스상 물질이다. 암석 내에서 생성되어 공극내에서 물에 용해된 라돈은 붕괴하지 않고 상태를 유지하게 되는데 이런 라돈이 존재하는 암석층으로부터 지하수를 취수할 경우, 상당량의 라돈이 지하수속에 용해되어 있을 수 있다. 이렇게 용해된 상당량의 라돈은 실내공기로 휘발하면서 주변으로 확산하게 된다. (중략)

  • PDF