• Title/Summary/Keyword: 딥-러닝 모델

Search Result 2,118, Processing Time 0.038 seconds

Electric Power Demand Prediction Using Deep Learning Model with Temperature Data (기온 데이터를 반영한 전력수요 예측 딥러닝 모델)

  • Yoon, Hyoup-Sang;Jeong, Seok-Bong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.7
    • /
    • pp.307-314
    • /
    • 2022
  • Recently, researches using deep learning-based models are being actively conducted to replace statistical-based time series forecast techniques to predict electric power demand. The result of analyzing the researches shows that the performance of the LSTM-based prediction model is acceptable, but it is not sufficient for long-term regional-wide power demand prediction. In this paper, we propose a WaveNet deep learning model to predict electric power demand 24-hour-ahead with temperature data in order to achieve the prediction accuracy better than MAPE value of 2% which statistical-based time series forecast techniques can present. First of all, we illustrate a delated causal one-dimensional convolutional neural network architecture of WaveNet and the preprocessing mechanism of the input data of electric power demand and temperature. Second, we present the training process and walk forward validation with the modified WaveNet. The performance comparison results show that the prediction model with temperature data achieves MAPE value of 1.33%, which is better than MAPE Value (2.33%) of the same model without temperature data.

A Study on the Defect Detection of Fabrics using Deep Learning (딥러닝을 이용한 직물의 결함 검출에 관한 연구)

  • Eun Su Nam;Yoon Sung Choi;Choong Kwon Lee
    • Smart Media Journal
    • /
    • v.11 no.11
    • /
    • pp.92-98
    • /
    • 2022
  • Identifying defects in textiles is a key procedure for quality control. This study attempted to create a model that detects defects by analyzing the images of the fabrics. The models used in the study were deep learning-based VGGNet and ResNet, and the defect detection performance of the two models was compared and evaluated. The accuracy of the VGGNet and the ResNet model was 0.859 and 0.893, respectively, which showed the higher accuracy of the ResNet. In addition, the region of attention of the model was derived by using the Grad-CAM algorithm, an eXplainable Artificial Intelligence (XAI) technique, to find out the location of the region that the deep learning model recognized as a defect in the fabric image. As a result, it was confirmed that the region recognized by the deep learning model as a defect in the fabric was actually defective even with the naked eyes. The results of this study are expected to reduce the time and cost incurred in the fabric production process by utilizing deep learning-based artificial intelligence in the defect detection of the textile industry.

An Efficient Dynamic Workload Balancing Strategy (DNN을 이용한 중환자 상태 징후 조기 예측)

  • Hyun-Suk Yoon;Gil-Sik Park;Hae-Jong Joo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.325-327
    • /
    • 2024
  • 국내외에서 AI기반 의료 솔루션 시장은 빠른 속도로 확장 중이며 이에 따른 다양한 의학 분야에서 많은 기법을 통한 의료 AI 시스템이 등장하고 있다. 그러나 기존 다양한 AI 연구가 이뤄짐에도 아직 중환자의 징후 예측에는 많은 어려움이 있다. 또한, 중환자의 경우 현재 의료진만으로 모든 환자를 필요한 시기에 진료하기엔 어려움이 있고 환자 상태 조기 예측이 필수적임을 관련 다양한 의학 기사를 통해 쉽게 인지할 수 있다. 본 연구에서는 위와 같은 문제점을 해결하고자 중환자의 진료 결과 데이터를 활용하여 환자의 진료 후 상태를 예측하는 모델을 생성하였다. '용인시산업진흥원'에서 제공하는 60만여 건에 달하는 환자 데이터를 수집하여, 중환자 상태 징후를 조기에 예측할 수 있는 머신러닝/딥러닝 기반 알고리즘으로 구현한 여러 모델에 대해 비교했을 때 딥러닝(DNN) 기반 모델이 약 92%의 분류 정확도를 측정할 수 있었다.

  • PDF

Comparison of Deep Learning Loss Function Performance for Medical Video Biomarker Extraction (의료 영상 바이오마커 추출을 위한 딥러닝 손실함수 성능 비교)

  • Seo, Jin-beom;Cho, Young-bok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.72-74
    • /
    • 2021
  • The deep learning process currently utilized in various fields consists of data preparation, data preprocessing, model generation, model learning, and model evaluation. In the process of model learning, the loss function compares the value of the model with the actual value and outputs the difference. In this paper, we analyze various loss functions used in the deep learning model for biomarker extraction, which measure the degree of loss of neural network output values, and try to find the best loss function through experiments.

  • PDF

Research of LOCA-Based Approach Applied to Users' Preferences on Items in Different Domains (상이한 아이템에 대한 사용자 선호도 활용 LOCA 접근 방법 연구)

  • Paik, Juryon;Ko, Kwang-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.59-60
    • /
    • 2022
  • 갈수록 개인화되어 가는 추천시스템은 다양한 모델에 의해 그 성능이 향상되고 있으며 최근 추세는 다른 분야와 마찬가지로 딥러닝 기반 모델을 적용하여 추천 품질을 향상하고 있다. 그러나 대다수의 추천시스템은 하나의 도메인에서 개별적으로 사용될 뿐, 유사도메인이나 상이한 도메인이나 모두 다른 도메인에서의 사용자 성향이나 아이템 유사성을 거의 또는 전혀 고려하지 않고 있다. 이는 추천결과의 sparsity와 cold-start 문제를 더 악화시키는 원인이 된다. 본 논문은 다양한 딥러닝 모델 적용 추천 모델 중 오토인코더 모델을 지역특화 협업에 적용한 모델을 간략하게 소개하고 해당 모델을 상이한 도메인 간의 적용하기 위한 첫 단계로 손실함수 부분에 대해 개념적으로 설명하고자 한다.

  • PDF

Focal Calibration Loss-Based Knowledge Distillation for Image Classification (이미지 분류 문제를 위한 focal calibration loss 기반의 지식증류 기법)

  • Ji-Yeon Kang;Jae-Won Lee;Sang-Min Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.695-697
    • /
    • 2023
  • 최근 몇 년 간 딥러닝 기반 모델의 규모와 복잡성이 증가하면서 강력하고, 높은 정확도가 확보되지만 많은 양의 계산 자원과 메모리가 필요하기 때문에 모바일 장치나 임베디드 시스템과 같은 리소스가 제한된 환경에서의 배포에 제약사항이 생긴다. 복잡한 딥러닝 모델의 배포 및 운영 시 요구되는 고성능 컴퓨터 자원의 문제점을 해결하고자 사전 학습된 대규모 모델로부터 가벼운 모델을 학습시키는 지식증류 기법이 제안되었다. 하지만 현대 딥러닝 기반 모델은 높은 정확도 대비 훈련 데이터에 과적합 되는 과잉 확신(overconfidence) 문제에 대한 대책이 필요하다. 본 논문은 효율적인 경량화를 위한 미리 학습된 모델의 과잉 확신을 방지하고자 초점 손실(focal loss)을 이용한 모델 보정 기법을 언급하며, 다양한 손실 함수 변형에 따라서 지식증류의 성능이 어떻게 변화하는지에 대해 탐구하고자 한다.

Multi-Decoder DNN Model for High Accuracy Segmentation using Pseudo Depth-Map and Efficient Training Strategy (의사 깊이맵을 이용한 다중 디코더 기반의 고정밀 분할 딥러닝 모델 개발 및 효율적인 학습 전략)

  • Yu-Jin Kim;Dongyoung Kim;Jeong-Gun Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.727-730
    • /
    • 2024
  • 최근 딥러닝 기술이 급속히 발전하며 현대 사회의 다양한 응용분야에서 빠르게 적용되고 있다. 특히 영상 기반의 딥러닝 기술은 자연어 처리와 함께 인공지능 기술의 핵심 연구 분야로 많은 연구가 진행되고 있다. 논문에서는 최근 많은 연구가 진행되고 있는 영상의 의미적 분할 (Semantic Segmentation) 성능을 향상하기 위한 연구를 진행한다. 특히 모델에서 고정밀의 의미적 분할을 수행할 수 있도록 추가적인 정보로써 의사 깊이맵 (Pseudo Depth-Map)을 활용하는 방법을 제안하였다. 더불어, 의사 깊이맵을 모델 상에서 효과적으로 학습시키기 위하여 다중 디코더 모델과 학습 효율을 높이는 학습 스케줄링 전략을 제안한다. 의사 깊이맵과 다중 디코더 모델 기반의 제안 모델은 기존 의미적 분할 모델과 비교하여 iIoU 기준 2%의 성능 향상을 보였다.

Using the Deep Learning for the System Architecture of Image Prediction (엔터프라이즈 환경의 딥 러닝을 활용한 이미지 예측 시스템 아키텍처)

  • Cheon, Eun Young;Choi, Sung-Ja
    • Journal of Digital Convergence
    • /
    • v.17 no.10
    • /
    • pp.259-264
    • /
    • 2019
  • This paper proposes an image prediction system architecture for deep running in enterprise environment. Easily transform into an artificial intelligence platform for an enterprise environment, and allow sufficient deep-running services to be developed and modified even in Java-centric architectures to improve the shortcomings of Java-centric enterprise development because artificial intelligence platforms are concentrated in the pipeline. In addition, based on the proposed environment, we propose a more accurate prediction system in the deep running architecture environment that has been previously learned through image forecasting experiments. Experiments show 95.23% accuracy in the image example provided for deep running to be performed, and the proposed model shows 96.54% accuracy compared to other similar models.

Hangul Font Dataset for Korean Font Research Based on Deep Learning (딥러닝 기반의 한글 폰트 연구를 위한 한글 폰트 데이터셋)

  • Ko, Debbie Honghee;Lee, Hyunsoo;Suk, Jungjae;Hassan, Ammar Ul;Choi, Jaeyoung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.2
    • /
    • pp.73-78
    • /
    • 2021
  • Recently, as interest in deep learning has increased, many researches in various fields using deep learning techniques have been conducted. Studies on automatic generation of fonts using deep learning-based generation models are limited to several languages such as Roman or Chinese characters. Generating Korean font is a very time-consuming and expensive task, and can be easily created using deep learning. For research on generating Korean fonts, it is important to prepare a Korean font dataset from the viewpoint of process automation in order to keep pace with deep learning-based generation models. In this paper, we propose a Korean font dataset for deep learning-based Korean font research and describe a method of constructing the dataset. Based on the Korean font data set proposed in this paper, we show the usefulness of the proposed dataset configuration through the process of applying it to a deep learning Korean font generation application.

Non-Homogeneous Haze Synthesis for Hazy Image Depth Estimation Using Deep Learning (불균일 안개 영상 합성을 이용한 딥러닝 기반 안개 영상 깊이 추정)

  • Choi, Yeongcheol;Paik, Jeehyun;Ju, Gwangjin;Lee, Donggun;Hwang, Gyeongha;Lee, Seungyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.3
    • /
    • pp.45-54
    • /
    • 2022
  • Image depth estimation is a technology that is the basis of various image analysis. As analysis methods using deep learning models emerge, studies using deep learning in image depth estimation are being actively conducted. Currently, most deep learning-based depth estimation models are being trained with clean and ideal images. However, due to the lack of data on adverse conditions such as haze or fog, the depth estimation may not work well in such an environment. It is hard to sufficiently secure an image in these environments, and in particular, obtaining non-homogeneous haze data is a very difficult problem. In order to solve this problem, in this study, we propose a method of synthesizing non-homogeneous haze images and a learning method for a monocular depth estimation deep learning model using this method. Considering that haze mainly occurs outdoors, datasets mainly containing outdoor images are constructed. Experiment results show that the model with the proposed method is good at estimating depth in both synthesized and real haze data.