• 제목/요약/키워드: 딥-러닝 모델

검색결과 2,119건 처리시간 0.04초

인공지능의 사회적 수용도에 따른 키워드 검색량 기반 주가예측모형 비교연구 (Comparison of Models for Stock Price Prediction Based on Keyword Search Volume According to the Social Acceptance of Artificial Intelligence)

  • 조유정;손권상;권오병
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.103-128
    • /
    • 2021
  • 최근 주식의 수익률과 거래량을 설명하는 주요 요인으로서 투자자의 관심도와 주식 관련 정보 전파의 영향력이 부각되고 있다. 또한 인공지능과 같은 혁신 신기술을 개발보급하거나 활용하려는 기업의 경우 거시환경 및 시장 불확실성 때문에 기업의 미래 주식 수익률과 주식 변동성을 예측하기 어렵다는 문제를 가지고 있다. 이는 인공지능 활성화의 장애요인으로 인식되고 있다. 따라서 본 연구의 목적은 인공지능 관련 기술 키워드의 인터넷 검색량을 투자자의 관심 척도로 사용하여, 기업의 주가 변동성을 예측하는 기계학습 모형을 제안하는 것이다. 이를 위해 심층신경망 LSTM(Long Short-Term Memory)과 벡터자기회귀(Vector Autoregression)를 통해 주식시장을 예측하고, 기술의 사회적 수용 단계에 따라 키워드 검색량을 활용한 주가예측 성능 비교를 통해 기업의 투자수익 예측이나 투자자들의 투자전략 의사결정을 지원하는 주가 예측 모형을 구축하였다. 또한 인공지능 기술의 세부 하위 기술에 대한 분석도 실시하여 기술 수용 단계에 따른 세부 기술 키워드 검색량의 변화를 살펴보고 세부기술에 대한 관심도가 주식시장 예측에 미치는 영향을 살펴보았다. 이를 위해 본 연구에서는 인공지능, 딥러닝, 머신러닝 키워드를 선정하여, 2015년 1월 1일부터 2019년 12월 31일까지 5년간의 인터넷 주별 검색량 데이터와 코스닥 상장 기업의 주가 및 거래량 데이터를 수집하여 분석에 활용하였다. 분석 결과 인공지능 기술에 대한 키워드 검색량은 사회적 수용 단계가 진행될수록 증가하는 것으로 나타났고, 기술 키워드를 기반으로 주가예측을 하였을 경우 인식(Awareness)단계에서 가장 높은 정확도를 보였으며, 키워드별로 가장 좋은 예측 성능을 보이는 수용 단계가 다르게 나타남을 확인하였다. 따라서 기술 키워드를 활용한 주가 예측 모델 구축을 위해서는 해당 기술의 하위 기술 분류를 고려할 필요가 있다. 본 연구의 결과는 혁신기술을 기반으로 기업의 투자수익률을 예측하기 위해서는 기술에 대한 대중의 관심이 급증하는 인식 단계를 포착하는 것이 중요하다는 점을 시사한다. 또한 최근 금융권에서 선보이고 있는 빅데이터 기반 로보어드바이저(Robo-advisor) 등 투자 의사 결정 지원 시스템 개발 시 기술의 사회적 수용도를 세분화하여 키워드 검색량 변화를 통해 예측 모델의 정확도를 개선할 수 있다는 점을 시사하고 있다.

한국형 멀티모달 몽타주 앱을 위한 생성형 AI 연구 (Research on Generative AI for Korean Multi-Modal Montage App)

  • 임정현;차경애;고재필;홍원기
    • 서비스연구
    • /
    • 제14권1호
    • /
    • pp.13-26
    • /
    • 2024
  • 멀티모달 (multi-modal) 생성이란 텍스트, 이미지, 오디오 등 다양한 정보를 기반으로 결과를 도출하는 작업을 말한다. AI 기술의 비약적인 발전으로 인해 여러 가지 유형의 데이터를 종합적으로 처리해 결과를 도출하는 멀티모달 기반 시스템 또한 다양해지는 추세이다. 본 논문은 음성과 텍스트 인식을 활용하여 인물을 묘사하면, 몽타주 이미지를 생성하는 AI 시스템의 개발 내용을 소개한다. 기존의 몽타주 생성 기술은 서양인들의 외형을 기준으로 이루어진 반면, 본 논문에서 개발한 몽타주 생성 시스템은 한국인의 안면 특징을 바탕으로 모델을 학습한다. 따라서, 한국어에 특화된 음성과 텍스트의 멀티모달을 기반으로 보다 정확하고 효과적인 한국형 몽타주 이미지를 만들어낼 수 있다. 개발된 몽타주 생성 앱은 몽타주 초안으로 충분히 활용 가능하기 때문에 기존의 몽타주 제작 인력의 수작업을 획기적으로 줄여줄 수 있다. 이를 위해 한국지능정보사회진흥원의 AI-Hub에서 제공하는 페르소나 기반 가상 인물 몽타주 데이터를 활용하였다. AI-Hub는 AI 기술 및 서비스 개발에 필요한 인공지능 학습용 데이터를 구축하여 원스톱 제공을 목적으로 한 AI 통합 플랫폼이다. 이미지 생성 시스템은 고해상도 이미지를 생성하는데 사용하는 딥러닝 모델인 VQGAN과 한국어 기반 영상생성 모델인 KoDALLE 모델을 사용하여 구현하였다. 학습된 AI 모델은 음성과 텍스트를 이용해 묘사한 내용과 매우 유사한 얼굴의 몽타주 이미지가 생성됨을 확인할 수 있다. 개발된 몽타주 생성 앱의 실용성 검증을 위해 10명의 테스터가 사용한 결과 70% 이상이 만족한다는 응답을 보였다. 몽타주 생성 앱은 범죄자 검거 등 얼굴의 특징을 묘사하여 이미지화하는 여러 분야에서 다양하게 사용될 수 있을 것이다.

원격 탐사 영상을 활용한 CNN 기반의 초해상화 기법 연구 (A Study of CNN-based Super-Resolution Method for Remote Sensing Image)

  • 최연주;김민식;김용우;한상혁
    • 대한원격탐사학회지
    • /
    • 제36권3호
    • /
    • pp.449-460
    • /
    • 2020
  • 초해상화 기법은 저해상도 영상을 고해상도 영상으로 변환하는 기법이다. 최근에는 딥러닝 기술을 활용한 초해상화 방법이 주류를 이루고 있으며, 원격 탐사 분야에서도 이를 응용한 연구가 증가하고 있다. 본 연구에서는 위성 영상의 4배 해상도 향상을 위하여 deep back-projection network (DBPN) 네트워크에 기반한 초해상화 기법을 제안하였다. 또한, 복원된 영상의 디테일 및 윤곽선 부분에서의 고품질 영상 획득을 위해 윤곽선 손실 함수를 제안하고, 효과적이고 안정적인 학습을 위하여 Wasserstein distance 손실 함수를 사용한 GAN 기법을 적용하였다. 또한, 자연스러운 저해상도 훈련 영상을 획득하기 위한 detail preserving image downscaling (DPID) 기법을 적용하였다. 마지막으로 전정 영상의 특징을 추출하여 훈련의 마지막 단계에 적용 시킴으로써 출력 영상의 세부적인 특징을 효과적으로 생성하였다. 그 결과 실험에 사용된 WorldView-3 영상 및 KOMPSAT-2 영상에서 해상도 향상 효과를 확인하였고, 다른 초해상화 모델에 대비하여 윤곽선 보존력이나 영상의 선명도가 향상 되었음을 확인하였다

미래 기상정보를 사용하지 않는 LSTM 기반의 피크시간 태양광 발전량 예측 기법 (A LSTM Based Method for Photovoltaic Power Prediction in Peak Times Without Future Meteorological Information)

  • 이동훈;김관호
    • 한국전자거래학회지
    • /
    • 제24권4호
    • /
    • pp.119-133
    • /
    • 2019
  • 최근 태양광 발전량 예측은 태양광 발전량 설비 시스템의 안정적인 작동을 위한 조정 계획, 설비 규격 결정 및 생산 계획 일정을 수립하기 위해 필수적인 요소로 고려된다. 특히, 대부분의 태양광 발전량은 피크시간에 측정되기 때문에, 태양광 시스템 운영자의 이익 최대화와 전력 계통량 안정화를 위해 피크시간의 태양광 발전량 예측은 매우 중요한 요소이다. 또한, 기존 연구들은 광범위한 지역에서 예측된 불확실한 기후 정보들을 이용하여 태양광 발전량을 예측하는 한계점 때문에 일사량, 운량, 온도 등과 기상정보 없이 피크시간의 태양광 발전량을 예측하는 것은 매우 어려운 문제로 고려된다. 따라서 본 논문에서는 피크이전의 기후, 계절 및 관측된 태양광 발전량을 이용하여 미래의 기후 및 계절 정보 없이 피크시간의 태양광 발전량을 예측할 수 있는 LSTM(Long-Shot Term Memory) 기반의 태양광 발전량 예측 기법을 제안한다. 본 연구에서 제안한 모델을 기반으로 실 데이터를 통한 실험 결과, 단기 및 장기적 관점에서 높은 성능을 보였으며, 이는 본 연구에서 목표로 한 피크시간의 태양광 발전량 예측 성능 향상에 긍정적인 영향을 나타내었음을 보여준다.

RGB-D 정보를 이용한 객체 탐지 기반의 신체 키포인트 검출 방법 (A Method for Body Keypoint Localization based on Object Detection using the RGB-D information)

  • 박서희;전준철
    • 인터넷정보학회논문지
    • /
    • 제18권6호
    • /
    • pp.85-92
    • /
    • 2017
  • 최근 영상감시 분야에서는 영상에서 움직이는 사람을 탐지하고, 탐지된 사람의 행위를 분석하는 방식에 딥러닝 기반 학습방법이 적용되기 시작했다. 이러한 지능형 영상분석 기술을 적용할 수 있는 분야 중 하나인 인간 행위 인식은 객체를 탐지하고 탐지된 객체의 행위를 인식하기 위해 신체 키포인트를 검출 하는 과정을 거치게 된다. 본 논문에서는 RGB-D 정보를 이용한 객체 탐지 기반의 신체 키포인트 검출 방법을 제시한다. 먼저, 두 대의 카메라로 생성된 색상정보와 깊이정보를 이용하여 이동하는 객체를 배경으로부터 분할하여 탐지한다. RGB-D 정보를 이용하여 탐지된 객체의 영역을 재조정하여 생성된 입력 데이터를 한 사람의 자세 추정을 위한 Convolutional Pose Machines(CPM)에 적용한다. CPM을 이용하여 한 사람당 14개의 신체부위에 대한 신념 지도(Belief Map)를 생성하고, 신념 지도를 기반으로 신체 키포인트를 검출한다. 이와 같은 방법은 키포인트를 검출할 객체에 대한 정확한 영역을 제공하게 되며, 개별적인 신체 키포인트의 검출을 통하여 단일 신체 키포인트 검출에서 다중 신체 키포인트 검출로 확장 할 수 있다. 향후, 검출된 키포인트를 이용하여 인간 자세 추정을 위한 모델을 생성할 수 있으며 인간 행위 인식 분야에 기여 할 수 있다.

국가 과학기술 표준분류 체계 기반 연구보고서 문서의 자동 분류 연구 (Research on Text Classification of Research Reports using Korea National Science and Technology Standards Classification Codes)

  • 최종윤;한혁;정유철
    • 한국산학기술학회논문지
    • /
    • 제21권1호
    • /
    • pp.169-177
    • /
    • 2020
  • 과학기술 분야의 연구·개발 결과는 연구보고서 형태로 국가과학기술정보서비스(NTIS)에 제출된다. 각 연구보고서는 국가과학기술 표준 분류체계 (K-NSCC)에 따른 분류코드를 가지고 있는데, 보고서 작성자가 제출 시에 수동으로 입력하게끔 되어있다. 하지만 2000여 개가 넘는 세분류를 가지고 있기에, 분류체계에 대한 정확한 이해가 없이는 부정확한 분류코드를 선택하기 십상이다. 새로이 수집되는 연구보고서의 양과 다양성을 고려해 볼 때, 이들을 기계적으로 보다 정확하게 분류할 수 있다면 보고서 제출자의 수고를 덜어줄 수 있을 뿐만 아니라, 다른 부가 가치적인 분석 서비스들과의 연계가 수월할 것이다. 하지만, 국내에서 과학기술표준 분류체계에 기반을 둔 문서 자동 분류 연구 사례는 거의 없으며 공개된 학습데이터도 전무하다. 본 연구는 KISTI가 보유하고 있는 최근 5년간 (2013년~2017년) NTIS 연구보고서 메타정보를 활용한 최초의 시도로써, 방대한 과학기술표준 분류체계를 기반으로 하는 국내 연구보고서들을 대상으로 높은 성능을 보이는 문서 자동 분류기법을 도출하는 연구를 진행하였다. 이를 위해, 과학기술 표준분류 체계에서 과학기술 분야의 연구보고서를 분류하기에 적합한 중분류 210여 개를 선별하였으며, 연구보고서 메타 데이터의 특성을 고려한 전처리를 진행하였다. 특히, 가장 영향력 있는 필드인 과제명(제목)과 키워드만을 이용한 TK_CNN 기반의 딥러닝 기법을 제안한다. 제안 모델은 텍스트 분류에서 좋은 성능을 보이고 있는 기계학습법들 (예, Linear SVC, CNN, GRU등)과 비교하였으며, Top-3 F1점수 기준으로 1~7%에 이르는 성능 우위를 확인하였다.

Landsat 8 기반 SPARCS 데이터셋을 이용한 U-Net 구름탐지 (U-Net Cloud Detection for the SPARCS Cloud Dataset from Landsat 8 Images)

  • 강종구;김근아;정예민;김서연;윤유정;조수빈;이양원
    • 대한원격탐사학회지
    • /
    • 제37권5_1호
    • /
    • pp.1149-1161
    • /
    • 2021
  • 컴퓨터 비전 기술이 위성영상에 적용되면서, 최근 들어 딥러닝 영상인식을 이용한 구름 탐지가 관심을 끌고 있다. 본연구에서는 SPARCS (Spatial Procedures for Automated Removal of Cloud and Shadow) Cloud Dataset과 영상자료증대 기법을 활용하여 U-Net 구름탐지 모델링을 수행하고, 10폴드 교차검증을 통해 객관적인 정확도 평가를 수행하였다. 512×512 화소로 구성된 1800장의 학습자료에 대한 암맹평가 결과, Accuracy 0.821, Precision 0.847, Recall 0.821, F1-score 0.831, IoU (Intersection over Union) 0.723의 비교적 높은 정확도를 나타냈다. 그러나 구름그림자 중 14.5%, 구름 중 19.7% 정도가 땅으로 잘못 예측되기도 했는데, 이는 학습자료의 양과 질을 보다 더 향상시킴으로써 개선 가능할 것으로 보인다. 또한 최근 각광받고 있는 DeepLab V3+ 모델이나 NAS(Neural Architecture Search) 최적화 기법을 통해 차세대중형위성 1, 2, 4호 등의 구름탐지에 활용 가능할 것으로 기대한다.

베이지안 확률 및 폐쇄 순차패턴 마이닝 방식을 이용한 설명가능한 로그 이상탐지 시스템 (An Interpretable Log Anomaly System Using Bayesian Probability and Closed Sequence Pattern Mining)

  • 윤지영;신건윤;김동욱;김상수;한명묵
    • 인터넷정보학회논문지
    • /
    • 제22권2호
    • /
    • pp.77-87
    • /
    • 2021
  • 인터넷과 개인용 컴퓨터가 발달하면서 다양하고 복잡한 공격들이 등장하기 시작했다. 공격들이 복잡해짐에 따라 기존에 사용하던 시그니처 기반의 탐지 방식으로 탐지가 어려워졌으며 이를 해결하기 위해 행위기반의 탐지를 위한 로그 이상탐지에 대한 연구가 주목 받기 시작했다. 최근 로그 이상탐지에 대한 연구는 딥러닝을 활용해 순서를 학습하는 방식으로 이루어지고 있으며 좋은 성능을 보여준다. 하지만 좋은 성능에도 불구하고 판단에 대한 근거를 제공하지 못한다는 한계점을 지닌다. 판단에 대한 근거 및 설명을 제공하지 못할 경우, 데이터가 오염되거나 모델 자체에 결함이 발생해도 이를 발견하기 어렵다는 문제점을 지닌다. 결론적으로 사용자의 신뢰성을 잃게 된다. 이를 해결하기 위해 본 연구에서는 설명가능한 로그 이상탐지 시스템을 제안한다. 본 연구는 가장 먼저 로그 파싱을 진행해 로그 전처리를 수행한다. 이후 전처리된 로그들을 이용해 베이지안 확률 기반 순차 규칙추출을 진행한다. 결과적으로 "If 조건 then 결과, 사후확률(θ)" 형식의 규칙집합을 추출하며 이와 매칭될 경우 정상, 매칭되지 않을 경우, 이상행위로 판단하게 된다. 실험으로는 HDFS 로그 데이터셋을 활용했으며, 그 결과 F1score 92.7%의 성능을 나타내었다.

A BERGPT-chatbot for mitigating negative emotions

  • Song, Yun-Gyeong;Jung, Kyung-Min;Lee, Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권12호
    • /
    • pp.53-59
    • /
    • 2021
  • 본 연구에서는 '레플리카'와 같은 텍스트 입력 기반의 부정적 감정 완화가 가능한 국내 인공지능 챗봇인 BERGPT-chatbot을 제안하고자 한다. BERGPT-chatbot은 KR-BERT와 KoGPT2-chatbot을 파이프라인으로 만들어 감정 완화 챗봇을 모델링하였다. KR-BERT를 통해 정제되지 않은 일상 데이터셋에 감정을 부여하고, 추가 데이터셋을 KoGPT2-chatbot을 통해 학습하는 방식이다. BERGPT-chatbot의 개발 배경은 다음과 같다. 현재 전 세계적으로 우울증 환자가 증가하고 있으며, 이는 COVID-19로 인해 장기적 실내 생활이나 대인 관계 제한으로 더욱 심각한 문제로 대두되었다. 그로 인해 부정적 감정 완화나 정신 건강 케어에 목적을 둔 국외의 인공지능 챗봇이 팬데믹 사태로 사용량이 증가하였다. 국내에서도 국외의 챗봇과 비슷한 심리 진단 챗봇이 서비스 되고 있으나, 국내의 챗봇은 텍스트 입력 기반 답변이 아닌 버튼형 답변 중심으로 국외 챗봇과 비교하였을 때 심리 진단 수준에 그쳐 아쉬운 실정이다. 따라서, BERGPT-chatbot을 통해 감정 완화에 도움을 주는 챗봇을 제안하였으며, BERGPT-chatbot과 KoGPT2-chatbot을 언어 모델의 내부 평가 지표인 '퍼플렉서티'를 통해 비교 분석하여 BERGPT-chatbot의 우수함을 보여주고자 한다.

인공지능 스피커의 세대별 온라인 리뷰 분석을 통한 사용자 경험 요인 탐색 (Exploring user experience factors through generational online review analysis of AI speakers)

  • 박정은;양동욱;김하영
    • 한국융합학회논문지
    • /
    • 제12권7호
    • /
    • pp.193-205
    • /
    • 2021
  • 인공지능 스피커 시장은 꾸준히 성장하고 있지만, 실제 스피커 사용자들의 만족도는 42%에 그치고 있다. 따라서, 본 연구에서는 인공지능 스피커의 세대별 토픽 변화와 감성 변화를 통해 사용자 경험을 저해하는 요소는 무엇인지 분석해 보고자 한다. 이를 위해 아마존 에코 닷 3세대와 4세대 모델에 대한 리뷰를 수집하였다. 토픽모델링 분석 기법을 사용하여 세대별로 리뷰를 이루는 주제 및 주제의 변화를 찾아내고, 딥러닝 기반 감성 분석을 통해 토픽에 대한 사용자 감성이 세대에 따라 어떻게 변화되었는지 살펴보았다. 토픽모델링 결과, 세대별로 5개의 토픽이 도출되었다. 3세대의 경우 스피커의 일반적 속성을 나타내는 토픽은 제품에 긍정적 반응 요인으로 작용했고, 사용자 편의 기능은 부정적 반응 요인으로 작용했다. 반대로 4세대에서는 일반적 속성은 부정적으로, 사용자 편의 기능은 긍정적으로 도출되었다. 이와 같은 분석은 방법론 측면에서 어휘적 특징뿐 아니라 문장 전체의 문맥적 특징이 고려된 분석결과를 제시할 수 있다는 것에 그 의의가 있다.