인간은 사회적인 동물로서, 대화로써 정보를 얻거나 사회적인 교류를 해왔다. 대화는 두 사람 이상의 작은 모임에서 서로 말을 편하게 주고받는 것으로, 한 사람이 다른 사람에게 가지는 감성에 따라 그 말의 분위기가 달라질 수 있다. 영화에서 인물들과 인물들이 펼치는 이야기는 중요한 요소로 작용하며, 인물들 간의 관계는 이야기와 인물 간의 대사를 이해하는데 꼭 필요하다. 그러나 이런 정보를 영화에서 자동으로 추출하는 방법은 아직까지 연구되지 않아서 관객들에게 제공되고 있지 못하고 있다. 따라서, 영화 속 양상을 자동으로 분석하는 모델이 필요하다. 본 논문에서는 딥 러닝 기법을 활용하여 각 영화 등장 인물들 간의 감성을 측정하여 영화 속 인물들 간의 관계를 효과적으로 분석하는 방법을 제안한다. 제안 방법은 먼저 영화 대본으로부터 주요 인물들을 추출하고, 주요 인물들 간의 대화를 효과적으로 찾는다. 그런 다음, 주요 인물들 간의 관계를 분석하기 위하여, 감성 분석을 수행하여 전체 시간 간격 내 대사의 위치에 따라 가중치를 부여하고 점수를 수집한다. 또한, 실데이터를 이용한 실험을 통하여 제안 기법이 효과적으로 영화 등장 인물들 간의 감성을 분석할 수 있음을 보인다.
아동 그림은 내면의 감정을 표현할 수 있는 수단으로 아동 심리 진단에 널리 이용되고 있다. 본 논문에서는 아동 그림 분석에 적용할 수 있는 아동 그림 기반의 객체 탐지 알고리즘을 제안한다. 먼저 사진에서의 그림 영역을 추출하였고 데이터 라벨링 과정을 수행하였다. 이후 라벨링된 데이터 셋를 사용하여 Faster R-CNN 기반 객체 탐지모델을 학습하고 평가하였다. 탐지된 객체 결과를 기반으로 그림 면적 및 위치 또는 색상 정보를 계산하여 그림에 대한 기초정보를 쉽고 빠르게 분석할 수 있도록 설계하였다. 이를 통해 아동 그림을 이용한 심리분석에 있어 인공지능 기반 객체 탐지 알고리즘의 활용성을 보였다.
시각이 온전한 사람들은 식사를 할 때 시각에 대한 의존도를 깊게 인지하지 못한다. 그러나 시각장애인은 식단에 어떤 음식이 있는지 알지 못하기 때문에 옆에 있는 보조인이 시각장애인 수저로 음식의 위치를 시계방향 또는 전후좌우 등 일정한 방향으로 설명하여 그릇 위치를 확인한다. 본 논문에서는 시각장애인이 스마트폰의 카메라를 이용하여 자신의 식단을 비추면 각각의 음식 이미지를 인식하여 음성으로 음식의 이름을 알려주는 식사보조 시스템의 개발 내용에 대해 기술한다. 이 시스템은 음식과 식기도구(숟가락)의 이미지를 학습한 YOLO모델을 통해 숟가락이 놓인 음식을 추출해 내고, 이 음식이 무엇인지를 인식하여 이를 음성으로 알려준다. 본 시스템을 통해 시각장애인은 식사보조인의 도움없이 식사를 할 수 있음으로써 자립의지와 만족도를 높일 수 있을 것으로 기대한다.
비접촉형 체온 측정 시스템은 광학 및 열화상 카메라를 활용하여 집단시설의 발열성 질병을 관리하는 핵심 요소 중 하나이다. 기존 체온 측정 시스템은 딥러닝 기반 얼굴검출 알고리즘이 사용되어 얼굴영역의 단순 체온 측정에는 활용할 수 있지만, 의사표현이 어려운 영유아의 이상 징후를 인지하는데 한계가 있다. 본 논문에서는 기존의 체온 측정 시스템에서 영유아의 이상징후 감지를 위해 표정인식 알고리즘을 개선한다. 제안된 방법은 객체탐지 모델을 사용하여 영상에서 영유아를 검출한 후 얼굴영역을 추출하고 표정인식의 핵심 요소인 눈, 코, 입의 좌표를 획득한다. 이후 획득된 좌표를 기반으로 선택적 샤프닝 필터를 적용하여 표정인식을 진행한다. 실험결과에 따르면 제안된 알고리즘은 UTK 데이터셋에서 무표정, 웃음, 슬픔 3가지 표정에 대해 각각 2.52%, 1.12%, 2.29%가 향상되었다.
감시 영상에서 군중 행동의 자동 모니터링 및 감지는 보안, 안전 및 자산 보호와 같은 방대한 응용 프로그램으로 인해 컴퓨터 비전 분야에서 중요한 관심을 받고 있다. 또한 연구 커뮤니티에서 군중 분석 분야가 점차 증가하고 있다. 이를 위해서는 군중들의 행동을 감지하고 분석하는 것이 매우 필요하다. 본 논문에서는 스마트 시티에 설치된 감시 카메라의 비정상적인 활동을 감지하는 딥러닝 기반 방법을 제안하였다. 미세 조정된 VGG-16모델은 트레이닝된 공개적으로 사용 가능한 벤치마크 군중 데이터 셋을 실시간 스트리밍으로 테스트한다. CCTV카메라는 비디오 스트림을 캡쳐하는데, 비정상적인 활동이 감지되면 경보가 발생하여 추가 손실 전에 즉각적인 조치가 이루어지도록 가장 가까운 경찰서로 전송된다. 우리는 제안된 방법이 기존의 첨단 기술 보다 성능이 뛰어남을 실험으로 입증하였다.
터널 굴착 시 신속한 막장면 상태 파악 및 적절한 지보패턴 결정은 터널 붕락사고의 예방 및 안정적인 굴진에 매우 중요하다. 본 연구에서는 딥러닝 기법을 활용하여 막장면 상태에 따른 암반상태 분류를 신속하게 결정할 수 있는 기술을 개발하였으며, CNN 기법을 이용한 암반상태 분류방법 및 예측 정확도 개선 방법 등을 제시하고 있다. 수 만개의 이미지가 사전 학습된 VGG16 모델을 알고리즘으로 적용하였고, 1,469개의 터널 막장면 이미지에 대한 학습을 통하여 5개 등급으로 암반상태를 분류하였다. 본 연구에서의 예측 정확도는 최대 83.9% 수준을 나타내었으며, 향후 추가적인 이미지 축적을 통해 암반상태 평가자에 따른 편차를 줄인 객관적이고 정량적 암반상태 분류방법으로 활용 가능할 것으로 판단된다.
4차 산업 혁명이 진행되며 많은 회사들의 스마트 팩토리에 대한 관심이 커지고 있으며 센서의 중요성 또한 대두되고 있다. 정보를 수집하기 위한 센서에서 고장이 발생하면 공장을 최적화하여 운영할 수 없기 때문에 이에 따른 손해가 발생할 수 있다. 이를 위해 센서의 상태를 진단하여 센서의 고장을 진단하는 일이 필요하다. 본 논문에서는 디지털 센서의 고장유형 중 Rising time과 Falling time 고장을 딥러닝 알고리즘 RNN의 LSTM을 통해 신호를 분석하여 고장을 진단하는 모델을 제안한다. 제안한 방식의 실험 결과를 정확도와 ROC 곡선 그래프의 AUC(Area under the curve)를 이용하여 Rule 기반 고장진단 알고리즘과 비교하였다. 실험 결과, 제안한 시스템은 Rule 기반 고장진단 알고리즘 보다 향상되고 안정된 성능을 보였다.
금융 시계열 분석은 현대 사회의 경제적, 사회적으로 매우 중요한 역할을 하며 세계 발전에 영향을 미치는 중요한 과제지만 많은 잡음(noise)과 불확실성 등의 어려움으로 인해 금융 시계열 분석 예측은 어려운 연구 주제이다. 본 논문에서는 비정형 데이터와 정형 데이터를 함께 이미지로 변환하여 시장을 예측 하는 방법(MPIL)을 제안한다. 시장 예측을 위해 n일 기간의 비정형 데이터인 SNS, 뉴스 데이터를 감정분석하고 정형 데이터인 시장 데이터를 GADF 알고리즘으로 이미지 변환하고 이미지 학습을 통해 n+1일의 가격을 예측하는 초단기 시장을 예측한다. MPIL은 평균 정확도 56%로 기존 시장예측에 사용되던 감정분석을 활용하여 LSTM으로 시장을 예측하는 모델 평균 정확도 50%보다 높은 정확도를 보였다.
본 논문은 저고도로 비행하는 초소형 무인기에 대한 탐지 및 분류에 대한 기술로써, 단순히 초소형 무인기를 탐지만 하는 것이 아니라 탐지된 무인기의 종류 및 모델까지 인식하는 심화학습 기반 탐지 및 분류 기법을 제안한다. 무인기의 소리 특성으로 MFCC를 사용하였고 탐지 및 분류를 위해 CNN를 사용하였다. 무인기들은 각각 CNN을 통해 구분할 수 있는 MFCC 특성을 가짐을 입증하였고, 또한 총 4가지의 무인기에 대한 dataset을 대상으로 분류를 한 결과 time-related sequence를 가지는 MFCC라 하더라도 RNN 대신 CNN를 사용하면 탐지 및 분류 능력을 갖추면서도 연산량을 줄일 수 있음을 검증하였다. 따라서 본 논문은 간단하면서도 효과적인 초소형 무인기 탐지 및 분류 방법을 제시한다.
교통사고로 인한 많은 인명피해가 발생하고 있으나, 첨단 기술의 발전에도 불구하고 교통사고 발생은 줄어들지 않고 있다. 교통사고를 사전에 예방하기 위해서는 향후 사고가 어떻게 변화하여 갈 것인지를 정확하게 예측할 필요가 있다. 지금까지 교통사고 발생 빈도 예측은 주요 연구 분야가 아니었으며 주로 과거 일정 기간의 통계를 기반으로 전통적인 방법으로 미시적으로 분석되어 왔다. 최근 AI 기술이 교통사고 분야에 도입 되었음에도 불구하고 주로 교통 흐름 예측에 초점을 맞추고 있어, 본 연구에서는 2014년부터 2019년까지 국내에서 발생한 1,339,587건의 교통사고 기록을 시계열 데이터로 변환하고 AI 알고리즘 LSTM을 이용하여 연령별, 시간별 교통사고 발생 빈도를 예측하였다. 또한 코로나-19로 인한 교통 환경의 변화에 맞추어 예측값과 실제값을 비교 검증하였다. 향후 이러한 연구결과가 교통사고 예방의 정책개선으로 이어지고 사고 예방에 활용 될 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.