• 제목/요약/키워드: 딥-러닝 모델

검색결과 2,119건 처리시간 0.034초

Analyzing Correlations between Movie Characters Based on Deep Learning

  • Jin, Kyo Jun;Kim, Jong Wook
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권10호
    • /
    • pp.9-17
    • /
    • 2021
  • 인간은 사회적인 동물로서, 대화로써 정보를 얻거나 사회적인 교류를 해왔다. 대화는 두 사람 이상의 작은 모임에서 서로 말을 편하게 주고받는 것으로, 한 사람이 다른 사람에게 가지는 감성에 따라 그 말의 분위기가 달라질 수 있다. 영화에서 인물들과 인물들이 펼치는 이야기는 중요한 요소로 작용하며, 인물들 간의 관계는 이야기와 인물 간의 대사를 이해하는데 꼭 필요하다. 그러나 이런 정보를 영화에서 자동으로 추출하는 방법은 아직까지 연구되지 않아서 관객들에게 제공되고 있지 못하고 있다. 따라서, 영화 속 양상을 자동으로 분석하는 모델이 필요하다. 본 논문에서는 딥 러닝 기법을 활용하여 각 영화 등장 인물들 간의 감성을 측정하여 영화 속 인물들 간의 관계를 효과적으로 분석하는 방법을 제안한다. 제안 방법은 먼저 영화 대본으로부터 주요 인물들을 추출하고, 주요 인물들 간의 대화를 효과적으로 찾는다. 그런 다음, 주요 인물들 간의 관계를 분석하기 위하여, 감성 분석을 수행하여 전체 시간 간격 내 대사의 위치에 따라 가중치를 부여하고 점수를 수집한다. 또한, 실데이터를 이용한 실험을 통하여 제안 기법이 효과적으로 영화 등장 인물들 간의 감성을 분석할 수 있음을 보인다.

아동 그림 심리분석을 위한 인공지능 기반 객체 탐지 알고리즘 응용 (Application of object detection algorithm for psychological analysis of children's drawing)

  • 임지연;이성옥;김경표;유용균
    • 한국산업정보학회논문지
    • /
    • 제26권5호
    • /
    • pp.1-9
    • /
    • 2021
  • 아동 그림은 내면의 감정을 표현할 수 있는 수단으로 아동 심리 진단에 널리 이용되고 있다. 본 논문에서는 아동 그림 분석에 적용할 수 있는 아동 그림 기반의 객체 탐지 알고리즘을 제안한다. 먼저 사진에서의 그림 영역을 추출하였고 데이터 라벨링 과정을 수행하였다. 이후 라벨링된 데이터 셋를 사용하여 Faster R-CNN 기반 객체 탐지모델을 학습하고 평가하였다. 탐지된 객체 결과를 기반으로 그림 면적 및 위치 또는 색상 정보를 계산하여 그림에 대한 기초정보를 쉽고 빠르게 분석할 수 있도록 설계하였다. 이를 통해 아동 그림을 이용한 심리분석에 있어 인공지능 기반 객체 탐지 알고리즘의 활용성을 보였다.

YOLO알고리즘을 활용한 시각장애인용 식사보조 시스템 개발 (Development a Meal Support System for the Visually Impaired Using YOLO Algorithm)

  • 이군호;문미경
    • 한국전자통신학회논문지
    • /
    • 제16권5호
    • /
    • pp.1001-1010
    • /
    • 2021
  • 시각이 온전한 사람들은 식사를 할 때 시각에 대한 의존도를 깊게 인지하지 못한다. 그러나 시각장애인은 식단에 어떤 음식이 있는지 알지 못하기 때문에 옆에 있는 보조인이 시각장애인 수저로 음식의 위치를 시계방향 또는 전후좌우 등 일정한 방향으로 설명하여 그릇 위치를 확인한다. 본 논문에서는 시각장애인이 스마트폰의 카메라를 이용하여 자신의 식단을 비추면 각각의 음식 이미지를 인식하여 음성으로 음식의 이름을 알려주는 식사보조 시스템의 개발 내용에 대해 기술한다. 이 시스템은 음식과 식기도구(숟가락)의 이미지를 학습한 YOLO모델을 통해 숟가락이 놓인 음식을 추출해 내고, 이 음식이 무엇인지를 인식하여 이를 음성으로 알려준다. 본 시스템을 통해 시각장애인은 식사보조인의 도움없이 식사를 할 수 있음으로써 자립의지와 만족도를 높일 수 있을 것으로 기대한다.

영유아 이상징후 감지를 위한 표정 인식 알고리즘 개선 (The improved facial expression recognition algorithm for detecting abnormal symptoms in infants and young children)

  • 김윤수;이수인;석종원
    • 전기전자학회논문지
    • /
    • 제25권3호
    • /
    • pp.430-436
    • /
    • 2021
  • 비접촉형 체온 측정 시스템은 광학 및 열화상 카메라를 활용하여 집단시설의 발열성 질병을 관리하는 핵심 요소 중 하나이다. 기존 체온 측정 시스템은 딥러닝 기반 얼굴검출 알고리즘이 사용되어 얼굴영역의 단순 체온 측정에는 활용할 수 있지만, 의사표현이 어려운 영유아의 이상 징후를 인지하는데 한계가 있다. 본 논문에서는 기존의 체온 측정 시스템에서 영유아의 이상징후 감지를 위해 표정인식 알고리즘을 개선한다. 제안된 방법은 객체탐지 모델을 사용하여 영상에서 영유아를 검출한 후 얼굴영역을 추출하고 표정인식의 핵심 요소인 눈, 코, 입의 좌표를 획득한다. 이후 획득된 좌표를 기반으로 선택적 샤프닝 필터를 적용하여 표정인식을 진행한다. 실험결과에 따르면 제안된 알고리즘은 UTK 데이터셋에서 무표정, 웃음, 슬픔 3가지 표정에 대해 각각 2.52%, 1.12%, 2.29%가 향상되었다.

컨볼루션 뉴럴 네트워크를 이용한 군중 행동 감지 (Crowd Behavior Detection using Convolutional Neural Network)

  • 와셈 울라;파트 우 민 울라;백성욱;이미영
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제15권6호
    • /
    • pp.7-14
    • /
    • 2019
  • 감시 영상에서 군중 행동의 자동 모니터링 및 감지는 보안, 안전 및 자산 보호와 같은 방대한 응용 프로그램으로 인해 컴퓨터 비전 분야에서 중요한 관심을 받고 있다. 또한 연구 커뮤니티에서 군중 분석 분야가 점차 증가하고 있다. 이를 위해서는 군중들의 행동을 감지하고 분석하는 것이 매우 필요하다. 본 논문에서는 스마트 시티에 설치된 감시 카메라의 비정상적인 활동을 감지하는 딥러닝 기반 방법을 제안하였다. 미세 조정된 VGG-16모델은 트레이닝된 공개적으로 사용 가능한 벤치마크 군중 데이터 셋을 실시간 스트리밍으로 테스트한다. CCTV카메라는 비디오 스트림을 캡쳐하는데, 비정상적인 활동이 감지되면 경보가 발생하여 추가 손실 전에 즉각적인 조치가 이루어지도록 가장 가까운 경찰서로 전송된다. 우리는 제안된 방법이 기존의 첨단 기술 보다 성능이 뛰어남을 실험으로 입증하였다.

CNN 기법을 활용한 터널 암판정 예측기술 개발 (Rock Classification Prediction in Tunnel Excavation Using CNN)

  • 김하영;조래훈;김규선
    • 한국지반공학회논문집
    • /
    • 제35권9호
    • /
    • pp.37-45
    • /
    • 2019
  • 터널 굴착 시 신속한 막장면 상태 파악 및 적절한 지보패턴 결정은 터널 붕락사고의 예방 및 안정적인 굴진에 매우 중요하다. 본 연구에서는 딥러닝 기법을 활용하여 막장면 상태에 따른 암반상태 분류를 신속하게 결정할 수 있는 기술을 개발하였으며, CNN 기법을 이용한 암반상태 분류방법 및 예측 정확도 개선 방법 등을 제시하고 있다. 수 만개의 이미지가 사전 학습된 VGG16 모델을 알고리즘으로 적용하였고, 1,469개의 터널 막장면 이미지에 대한 학습을 통하여 5개 등급으로 암반상태를 분류하였다. 본 연구에서의 예측 정확도는 최대 83.9% 수준을 나타내었으며, 향후 추가적인 이미지 축적을 통해 암반상태 평가자에 따른 편차를 줄인 객관적이고 정량적 암반상태 분류방법으로 활용 가능할 것으로 판단된다.

RNN 기반 디지털 센서의 Rising time과 Falling time 고장 검출 기법 (An RNN-based Fault Detection Scheme for Digital Sensor)

  • 이규형;이영두;구인수
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.29-35
    • /
    • 2019
  • 4차 산업 혁명이 진행되며 많은 회사들의 스마트 팩토리에 대한 관심이 커지고 있으며 센서의 중요성 또한 대두되고 있다. 정보를 수집하기 위한 센서에서 고장이 발생하면 공장을 최적화하여 운영할 수 없기 때문에 이에 따른 손해가 발생할 수 있다. 이를 위해 센서의 상태를 진단하여 센서의 고장을 진단하는 일이 필요하다. 본 논문에서는 디지털 센서의 고장유형 중 Rising time과 Falling time 고장을 딥러닝 알고리즘 RNN의 LSTM을 통해 신호를 분석하여 고장을 진단하는 모델을 제안한다. 제안한 방식의 실험 결과를 정확도와 ROC 곡선 그래프의 AUC(Area under the curve)를 이용하여 Rule 기반 고장진단 알고리즘과 비교하였다. 실험 결과, 제안한 시스템은 Rule 기반 고장진단 알고리즘 보다 향상되고 안정된 성능을 보였다.

비정형, 정형 데이터의 이미지 학습을 활용한 시장예측 (MPIL: Market prediction through image learning of unstructured and structured data)

  • 이윤선;이주홍;최범기;송재원
    • 스마트미디어저널
    • /
    • 제10권2호
    • /
    • pp.16-21
    • /
    • 2021
  • 금융 시계열 분석은 현대 사회의 경제적, 사회적으로 매우 중요한 역할을 하며 세계 발전에 영향을 미치는 중요한 과제지만 많은 잡음(noise)과 불확실성 등의 어려움으로 인해 금융 시계열 분석 예측은 어려운 연구 주제이다. 본 논문에서는 비정형 데이터와 정형 데이터를 함께 이미지로 변환하여 시장을 예측 하는 방법(MPIL)을 제안한다. 시장 예측을 위해 n일 기간의 비정형 데이터인 SNS, 뉴스 데이터를 감정분석하고 정형 데이터인 시장 데이터를 GADF 알고리즘으로 이미지 변환하고 이미지 학습을 통해 n+1일의 가격을 예측하는 초단기 시장을 예측한다. MPIL은 평균 정확도 56%로 기존 시장예측에 사용되던 감정분석을 활용하여 LSTM으로 시장을 예측하는 모델 평균 정확도 50%보다 높은 정확도를 보였다.

MFCC와 CNN을 이용한 저고도 초소형 무인기 탐지 및 분류에 대한 연구 (Detection and Classification for Low-altitude Micro Drone with MFCC and CNN)

  • 신경식;유신우;오혁준
    • 한국정보통신학회논문지
    • /
    • 제24권3호
    • /
    • pp.364-370
    • /
    • 2020
  • 본 논문은 저고도로 비행하는 초소형 무인기에 대한 탐지 및 분류에 대한 기술로써, 단순히 초소형 무인기를 탐지만 하는 것이 아니라 탐지된 무인기의 종류 및 모델까지 인식하는 심화학습 기반 탐지 및 분류 기법을 제안한다. 무인기의 소리 특성으로 MFCC를 사용하였고 탐지 및 분류를 위해 CNN를 사용하였다. 무인기들은 각각 CNN을 통해 구분할 수 있는 MFCC 특성을 가짐을 입증하였고, 또한 총 4가지의 무인기에 대한 dataset을 대상으로 분류를 한 결과 time-related sequence를 가지는 MFCC라 하더라도 RNN 대신 CNN를 사용하면 탐지 및 분류 능력을 갖추면서도 연산량을 줄일 수 있음을 검증하였다. 따라서 본 논문은 간단하면서도 효과적인 초소형 무인기 탐지 및 분류 방법을 제시한다.

LSTM을 이용한 교통사고 발생 패턴 예측 (Forecasting of Traffic Accident Occurrence Pattern Using LSTM)

  • 노유진;배상훈
    • 한국ITS학회 논문지
    • /
    • 제20권3호
    • /
    • pp.59-73
    • /
    • 2021
  • 교통사고로 인한 많은 인명피해가 발생하고 있으나, 첨단 기술의 발전에도 불구하고 교통사고 발생은 줄어들지 않고 있다. 교통사고를 사전에 예방하기 위해서는 향후 사고가 어떻게 변화하여 갈 것인지를 정확하게 예측할 필요가 있다. 지금까지 교통사고 발생 빈도 예측은 주요 연구 분야가 아니었으며 주로 과거 일정 기간의 통계를 기반으로 전통적인 방법으로 미시적으로 분석되어 왔다. 최근 AI 기술이 교통사고 분야에 도입 되었음에도 불구하고 주로 교통 흐름 예측에 초점을 맞추고 있어, 본 연구에서는 2014년부터 2019년까지 국내에서 발생한 1,339,587건의 교통사고 기록을 시계열 데이터로 변환하고 AI 알고리즘 LSTM을 이용하여 연령별, 시간별 교통사고 발생 빈도를 예측하였다. 또한 코로나-19로 인한 교통 환경의 변화에 맞추어 예측값과 실제값을 비교 검증하였다. 향후 이러한 연구결과가 교통사고 예방의 정책개선으로 이어지고 사고 예방에 활용 될 것으로 기대된다.