Journal of the Korea Society of Computer and Information
/
v.26
no.1
/
pp.27-35
/
2021
In this paper, we propose a new stacking ensemble framework for deep learning models which reflects the distribution of label embeddings. Our ensemble framework consists of two phases: training the baseline deep learning classifier, and training the sub-classifiers based on the clustering results of label embeddings. Our framework aims to divide a multi-class classification problem into small sub-problems based on the clustering results. The clustering is conducted on the label embeddings obtained from the weight of the last layer of the baseline classifier. After clustering, sub-classifiers are constructed to classify the sub-classes in each cluster. From the experimental results, we found that the label embeddings well reflect the relationships between classification labels, and our ensemble framework can improve the classification performance on a CIFAR 100 dataset.
Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.141-143
/
2021
본 논문에서는 목조 문화재의 변위량을 감지할 수 있는 앙상블 딥러닝 모델 모델을 제안한다. 우선 총 2개의 서로 다른 사전 학습된 합성 곱 신경망을 사용하여 입력 영상에 대한 심층 특징들을 추출한다. 그 이후 2개의 서로 다른 심층 특징들을 결합하여 하나의 특징 벡터를 생성한다. 그 이후 합쳐진 특징 벡터는 완전 연결 계층의 입력 값으로 들어와서 최종적으로 변위의 심각 단계에 대한 예측을 수행하게 된다. 데이터 셋으로는 충주시 근처의 문화재에 방문해서 수집한 목조 문화재 이미지를 가지고 정상 및 비정상으로 구분한 데이터 셋을 사용하였다. 실험 결과 앙상블 딥러닝 기법을 사용한 모델이 앙상블 기법을 사용하지 않는 모델보다 더 좋은 성능을 나타냄을 확인하였다. 이러한 결과로부터 우리가 제안한 방법이 목재 문화재의 변위량 예측에 있어서 매우 적합함을 보여준다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.8-11
/
2019
앙상블 기법은 여러 모델을 종합하여 최종 판단을 산출하는 기계 학습 기법으로서 딥러닝 모델의 성능 향상을 보장한다. 하지만 대부분의 기법은 앙상블만을 위한 추가적인 모델 또는 별도의 연산을 요구한다. 이에 우리는 앙상블 기법을 교차 검증 방법과 결합하여 앙상블 연산을 위한 비용을 줄이며 일반화 성능을 높이는 교차 검증 앙상블 기법을 제안한다. 본 기법의 효과를 입증하기 위해 MRPC, RTE 데이터셋과 BiLSTM, CNN, BERT 모델을 이용하여 기존 앙상블 기법보다 향상된 성능을 보인다. 추가로 교차 검증에서 비롯한 일반화 원리와 교차 검증 변수에 따른 성능 변화에 대하여 논의한다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.01a
/
pp.35-38
/
2023
포트홀은 주행하는 자동차와 접촉이 이뤄지면 차체나 운전자에게 충격을 주고 제어를 잃게 하여 도로 위 안전을 위협할 수 있다. 포트홀의 검출을 위한 국내 동향으로는 진동을 이용한 방식과 신고시스템 이용한 방식과 영상 인식을 기반한 방식이 있다. 이 중 영상 인식 기반 방식은 보급이 쉽고 비용이 저렴하나, 컴퓨터 비전 알고리즘은 영상의 품질에 따라 정확도가 달라지는 문제가 있었다. 이를 보완하기 위해 영상 인식 기반의 딥러닝 모델을 사용한다. 따라서, 본 논문에서는 사전 학습된 딥러닝 모델의 정확도 향상을 위한 Feature Level Ensemble 기법을 제안한다. 제안된 기법은 사전 학습된 CNN 모델 중 Test 데이터의 정확도 기준 Top-3 모델을 선정하여 각 딥러닝 모델의 Feature Map을 Concatenate하고 이를 Fully-Connected(FC) Layer로 입력하여 구현한다. Feature Level Ensemble 기법이 적용된 딥러닝 모델은 평균 대비 3.76%의 정확도 향상을 보였으며, Top-1 모델인 ShuffleNet보다 0.94%의 정확도 향상을 보였다. 결론적으로 본 논문에서 제안된 기법은 사전 학습된 모델들을 이용하여 각 모델의 다양한 특징을 통해 기존 모델 대비 정확도의 향상을 이룰 수 있었다.
Machine learning refers to a model generation technique that can solve specific problems from the generalization process for given data. In order to generate a high performance model, high quality training data and learning algorithms for generalization process should be prepared. As one way of improving the performance of model to be learned, the Ensemble technique generates multiple models rather than a single model, which includes bagging, boosting, and stacking learning techniques. This paper proposes a new Ensemble technique with multiple stacking that outperforms the conventional stacking technique. The learning structure of multiple stacking ensemble technique is similar to the structure of deep learning, in which each layer is composed of a combination of stacking models, and the number of layers get increased so as to minimize the misclassification rate of each layer. Through experiments using four types of datasets, we have showed that the proposed method outperforms the exiting ones.
Ha, Tae Min;Cho, Seongwon;Tra, Ngo Luong Thanh;Thanh, Do Chi;Lee, Keeseong
Smart Media Journal
/
v.11
no.1
/
pp.31-37
/
2022
This paper proposes a study on applying signal processing and deep learning for sound recognition that detects sounds commonly heard in daily life (Screaming, Clapping, Crowd_clapping, Car_passing_by and Back_ground, etc.). In the proposed sound recognition, several techniques related to the spectrum of sound waves, augmentation of sound data, ensemble learning for various predictions, convolutional neural networks (CNN) deep learning, and two-dimensional (2-D) data are used for improving the recognition accuracy. The proposed sound recognition technology shows that it can accurately recognize various sounds through experiments.
Physics-Informed Neural Network (PINN) is used to invert bubble size distributions from attenuation losses. By considering a linear system for the bubble population inversion, Adaptive Learned Iterative Shrinkage Thresholding Algorithm (Ada-LISTA), which has been solved linear systems in image processing, is used as a neural network architecture in PINN. Furthermore, a regularization based on the linear system is added to a loss function of PINN and it makes a PINN have better generalization by a solution satisfying the bubble physics. To evaluate an uncertainty of bubble estimation, deep ensemble is adopted. 20 Ada-LISTAs with different initial values are trained using the same training dataset. During test with attenuation losses different from those in the training dataset, the bubble size distribution and corresponding uncertainty are indicated by average and variance of 20 estimations, respectively. Deep ensemble Ada-LISTA demonstrate superior performance in inverting bubble size distributions than the conventional convex optimization solver of CVX.
Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.129-131
/
2021
본 논문에서는 심층 특징 앙상블을 사용하여 목조 문화재의 변위 현상 중 하나인 배부름 현상을 감지할 수 있는 모델을 제안한다. 우선 총 4개의 서로 다른 사전 학습된 합성 곱 신경망을 사용하여 입력 영상에 대한 심층 특징들을 추출한다. 그 이후 4개의 서로 다른 심층 특징들을 결합하여 하나의 특징 벡터를 생성한다. 그 이후 합쳐진 특징 벡터는 완전 연결 계층의 입력 값으로 들어와서 최종적으로 변위가 존재하는지 아닌지에 대한 예측을 수행하게 된다. 데이터 셋으로는 충주시 근처의 문화재에 방문해서 수집한 목조 문화재 이미지를 가지고 정상 및 비정상으로 구분한 데이터 셋을 사용하였다. 실험 결과 심층 특징 앙상블 기법을 사용한 모델이 앙상블 기법을 사용하지 않은 모델보다 더 좋은 성능을 나타냄을 확인하였다. 이러한 결과로 부터 우리가 제안한 방법이 목재 문화재의 배부름 현상에 대한 변위 검출에 있어서 매우 적합함을 보여준다.
Journal of the Korea Society of Computer and Information
/
v.27
no.11
/
pp.29-38
/
2022
This paper proposes a system for classifying gait types using an ensemble deep learning network for gait data measured by a smart insole equipped with multi-sensors. The gait type classification system consists of a part for normalizing the data measured by the insole, a part for extracting gait features using a deep learning network, and a part for classifying the gait type by inputting the extracted features. Two kinds of gait feature maps were extracted by independently learning networks based on CNNs and LSTMs with different characteristics. The final ensemble network classification results were obtained by combining the classification results. For the seven types of gait for adults in their 20s and 30s: walking, running, fast walking, going up and down stairs, and going up and down hills, multi-sensor data was classified into a proposed ensemble network. As a result, it was confirmed that the classification rate was higher than 90%.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
fall
/
pp.7-8
/
2021
인공지능 기술과 서비스는 딥러닝을 중심으로 한 기계학습 기술의 급속한 발전에서 원인을 둔다. 딥러닝 발전 요인으로 GPU등 하드웨어 발전, 기술 공유, 대규모 학습데이터 구축 및 공개를 들 수 있다. 데이터 셋에 관련하여 센서를 이용한 데이터셋의 경우 단순히 많은 데이터셋의 확보뿐 아니라 적절한 위치 및 환경에 따른 고려가 필요하다. 본 논문에서는 UCI의 화학 가스의 데이터셋을 이용하여 위치별 시계열 데이터를 딥러닝을 이용하여 분석하고, 위치별 정확도와 손실을 계산한다. 또한 계산된 결과를 히트맵을 통하여 시각화하여 직관적인 이해를 높인다. 또한 위치별 정확도가 높은 상위 5개의 위치에서 앙상블 방법을 통한 성능의 향상을 확인 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.