
I. Introduction

The population of bubbles in water is one of the key 

factors affecting the transmission of underwater sound. 

The acoustic characteristics of bubbles, such as resonance, 

scattering, and attenuation depend on the size and amount 

of the bubbles. In various fields, many work have been 

performed to measure the bubble size distribution (or 
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ABSTRACT: Physics-Informed Neural Network (PINN) is used to invert bubble size distributions from 

attenuation losses. By considering a linear system for the bubble population inversion, Adaptive Learned Iterative 

Shrinkage Thresholding Algorithm (Ada-LISTA), which has been solved linear systems in image processing, is 

used as a neural network architecture in PINN. Furthermore, a regularization based on the linear system is added 

to a loss function of PINN and it makes a PINN have better generalization by a solution satisfying the bubble 

physics. To evaluate an uncertainty of bubble estimation, deep ensemble is adopted. 20 Ada-LISTAs with 

different initial values are trained using the same training dataset. During test with attenuation losses different from 

those in the training dataset, the bubble size distribution and corresponding uncertainty are indicated by average 

and variance of 20 estimations, respectively. Deep ensemble Ada-LISTA demonstrate superior performance in 

inverting bubble size distributions than the conventional convex optimization solver of CVX.
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초    록: 기포 크기 분포를 음파 감쇄 손실을 이용하여 역산하기 위해 Physics-Informed Neural Network(PINN)을 

사용하였다. 역산에 사용되는 선형시스템을 풀기 위해 이미지 처리 분야에서 선형시스템 문제를 해결한 Adaptive 

Learned Iterative Shrinkage Thresholding Algorithm(Ada-LISTA)를 PINN의 신경망 구조로 이용하였다. 더 나아

가, PINN의 손실함수에 선형시스템 기반의 정규항을 포함함으로써 PINN의 해가 기포 물리 법칙을 만족하여 더 높은 

일반화 성능을 가지도록 하였다. 그리고 기포 추정값의 불확실성을 계산하기 위해 딥앙상블 기법을 이용하였다. 서로 

다른 초기값을 갖는 20개의 Ada-LISTA는 같은 훈련데이터를 이용하여 학습되었다. 이 후 테스트시 훈련데이터와 다

른 경향의 감쇄 손실을 입력으로 사용하여 기포 크기 분포를 추정하였고, 추정값과 이에 대한 불확실성을 20개 추정값

의 평균과 분산으로 각각 구하였다. 그 결과 딥앙상블이 적용된 Ada-LISTA는 기존 볼록 최적화 기법인 CVX보다 기

포 크기 분포를 역산하는데 더 우수한 성능을 보였다.
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bubble population).[1] As it is challenging to observe the 

bubble population directly, several studies have focused 

on predicting the bubble size distribution by utilizing their 

properties.[2]

Based on the Medwin’s approach, measurable attenua-

tion loss according to frequencies and bubble size dis-

tribution can be expressed as a simple linear relationship[2] 

and its inversion yields the bubble size distribution from 

the attenuation loss. In general, however, it is an under-

determined problem as the dimension of the attenuation 

loss (the number of given conditions) is smaller than that 

of the bubble size distribution (the number of un-

knowns).[3]

One of approaches for solving the ill-posed problem is a 

convex optimization, which estimates the optimal solution 

that minimizes objective function subject to constraints.[4] 

However, the convex optimization solver such as CVX 

requires a huge computational burden and cannot assess 

the uncertainty of the solutions.[5]

To estimate the uncertainty, we employed the concept 

of homogeneous deep ensemble learning, which is the 

method of combining multiple models based on Neural 

Networks (NNs) with the same architecture, but different 

initial values. Also, it yielded better performance than 

any of the individual models.[6] For the deep ensemble, we 

chose Physics-Informed Neural Network (PINN) with 

Adaptive Learned Iterative Shrinkage Thresholding Algo-

rithm (Ada-LISTA), which considers characteristics of 

the linear system during training to obtain an effective 

solution and enhance generalization.[7,8]

This paper is organized as follows. Sec. II explains the 

system model for relationship between the attenuation loss 

and bubble size distribution. Sec. III introduces PINN with 

Ada-LISTA for deep ensemble. In Sec. IV, simulations are 

carried out to examine performance of proposed scheme 

for estimating bubble size distribution using attenuation 

loss. Sec. V concludes the present study.

II. System model for estimating 

bubble size distribution using 

attenuation loss

As sound wave propagates through bubbly water, 

bubbles oscillate at resonant frequency, which is deter-

mined by bubble size. This oscillation causing absorption 

and scattering results in power loss of the incident wave. 

The total loss in power is denoted as attenuation loss, 

which is the ratio of incident wave intensity to attenuated 

wave intensity in decibel scale.[2] It can be expressed as 

follows:

  
 



  ∆ (1)

where N is the number of the interval of bubble size 

distribution,  is extinction cross sections related to the 

absorption and scattering of bubble,   is the number 

of bubble between  and ∆ per unit volume (also 

referred as to bubble density), and ∆ is a radius spacing 

between the interval. 

From Eq. (1), the attenuation loss has a linear relation-

ship with the bubble size distribution as follows:

 A (2)

where elements of , A and  are attenuation loss   , 

4.34 ∆, and bubble density  , respectively. 

To prevent a bias causing from uneven  norms of 

columns in matrix A during the solving the linear system 

of Eq. (2), we conduct a normalization to make the 

columns of matrix A have ones as follows: 

 A (3)

Elements of A and  are 4.34 


∥∥

∆
 and 

∥∥ , respectively.  is the  th -column of matrix 
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A and ∥∥ is the corresponding  norm.

In this problem, the inverse problem to obtain  from  

has an underdetermined linear system because the number 

of the attenuation loss is generally smaller than that of the 

bubble size distribution.

III. PINN for estimating bubble 

size distribution

PINN is a NN used for numerical solutions of Partial 

Differential Equation (PDE). It employs prior information 

such as PDE (i.e., physical laws) as a regularization term to 

constrain the solution space and enhance generalization.[7]

We propose a modified version of PINN that utilizes the 

linear system of Eq. (3) as prior knowledge to obtain 

solutions effectively. First, we replace the conventional 

NN architecture of PINN with Ada-LISTA considering the 

linear system model to enhance the performance of 

estimating the bubble size distribution and generalization 

(Sec III. 3.1); when using the conventional NN archi-

tecture of PINN, estimated bubble size distributions are 

significantly deviated from true values during test (not 

seen here). Next, loss functions of Ada-LISTA involve the 

physics-informed loss function from the linear system to 

satisfy the relationship between the attenuation loss and 

bubble size distribution (Sec III. 3.2). At the end, we apply 

the deep ensemble to increase the performance of modified 

model, and to assess the uncertainty of solutions (Sec III. 

3.3).

3.1 NN architecture for linear system

Ada-LISTA, which is derived from Iterative Soft 

Thresholding Algorithm (ISTA), has been introduced in 

image processing. ISTA has been used to infer an optimal 

solution for linear system in image denoising by iteratively 

updating the solution through a series of loops. However, 

ISTA has limitations, such as low convergence rates.[9] 

To produce approximate estimations fast by training, 

Learned-ISTA (LISTA), which interprets ISTA from a 

NN perspective, was proposed.[9] LISTA is a data-driven 

algorithm that uses measurement data and matrix of 

system to train the model. However, it has lack of 

generalization performance. To address these limitations, 

Ada-LISTA was introduced.[8] 

Ada-LISTA is a learned solver that adapts to the matrix 

of the system model during training. The output is 

iteratively reconstructed to be close to label by updating 

parameters along layers (Fig. 1). Using y, A and  (the 

output of the previous th  layer), Ada-LISTA produces 

 with the following iteration: 

x   
IA

TW
TWAx (4)

A
TW

Ty

where  is the layer index from 1 to , 
 

  is a soft thresholding function with 

threshold value , and  is the parameter which supports 

Ada-LISTA to convergence in linear rate. W 
AT 

and W  I
ATA are weight matrices.   is the 

step size. Learned parameters, which are collected in , 

are W, W, , and . Here, the output of  th  layer 

becomes final prediction  in this problem. 

3.2 Loss function in PINN

The loss function in PINN for estimating the bubble size 

distribution is defined as follows:[7]


min

  



∥
 ∥


, (5)

∥y
A


∥

Fig. 1. (Color available online) Ada-LISTA archi-

tecture as an iterative model. Ada-LISTA obtains a 

solution  for a linear system with measurement  

and dictionary matrix A by updating the weight 

matrix W, W over iterations (or layers).
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where   is the number of training data,  is the  th  

output of Ada-LISTA, and  is label. Each term in the loss 

function means as follows: 1) ∥
 ∥


 trains the 

Ada-LISTA in supervised learning frame which minimizes 

the error between 
  from y and the corresponding 

label .  is a hyperparameter that controls the impact of 

the supervised learning loss function in the training. 2) 

∥y
i A


∥

 trains the Ada-LISTA to follow the 

physics in the form of linear system, which is different 

from the conventional PINN using a PDE for loss function.

3.3 Deep ensemble for assessing the 

uncertainty of estimation

The deep ensemble is a method of combining the 

predictions from several machine learning models to 

increase a prediction accuracy, which is better than any of 

the individual models. Especially, homogenous deep 

ensemble is a technique that averages predictions from 

NNs having the same architecture but having different 

initialization. Since different initial values in NNs lead to 

different local minima, these diverse solutions can yield a 

better solution with their average and offer uncertainty of 

the solutions with their variance.[6]

We train many Ada-LISTAs with different initial values 

using Eq. (5) and obtain the final solution and uncertainty 

with the average and variance, respectively.

IV. Performance analysis of deep 

ensemble Ada-LISTA in 

estimating bubble size 

distribution

4.1 Data setup

Owing to difficulty in conducting experiments and 

labeling data for inverting the bubble size distribution 

using attenuation loss, we generated training and test 

dataset using the system model in Sec. II.

The training dataset consists of 5 000 input-output pairs. 

Elements of input and output are attenuation loss at a 

specific frequency and normalized bubble density at a 

specific bubble radius. For the normalization,   is 

randomly generated between zero and one and is scaled to 

be a low void fraction regime, where the linear system is 

valid, as follows:

←
  








∆V  (6)

where V is void fraction, which is less than 10-4.

Input data y consists of    at 781 frequencies 

spaced 10 Hz apart, ranging from 200 Hz to 8k Hz and has 

weak noise; signal-to-noise ratio is about 10 dB. The 

frequency range is determined by considering data from 

the relevant experiment conducted by Hanwha Ocean Co 

(not seen here). Output data  consists of   at 1 500 

bubble radii from 580 μm to 15 000 μm. The smallest radii 

of 580 μm corresponds to a resonant frequency 8 kHz. 

However, the largest bubble size is set as 15 000 μm 

because of the difficulty to observe bubble radii above the 

limit in the relevant experiments.[5]

In the training phase, the data pair is made with 

randomly generated bubble size distribution  and the 

corresponding attenuation loss  A. Since the attenua-

tion loss becomes different according to activating region 

in the bubble size distribution, the training dataset involves 

a data pair of (, ), where components in a specific 

region of  have non-zero values, as shown in Fig. 2 (the 

first 2 500 instances for ); the remaining data pairs are 

obtained by activating all components of . By using the 

training dataset as above, deep ensemble Ada-LISTA 

experiences dynamic patterns during training and it is 

advantage to better generalization. 

During test, the bubble size distribution is estimated 

using the trained deep ensemble Ada-LISTA for a given . 

Unlike 

 in the training phase, normal distributions with 

various standard deviations are used for  to generate  

deviated from that in the training dataset.[10] With this 

setting, the generalization can be evaluated by analyzing 
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bubble estimation performance in the test phase. The 

datasets are summarized in Table 1.

4.2 Inversion of bubble size distribution 

using PINN of deep ensemble 

Ada-LISTA

Layer number, epoch number, and learning rate are 6 ( 

= 6), 1 500 and 10-4, respectively, which are determined 

empirically. The hyperparameter  of the loss function is 

set as 0.05, which yields similar results in the range of 0.01 

to 0.1. We train 20 Ada-LISTAs with different initial values 

and apply 500 attenuation losses from the test dataset, 

which are different from those in the training dataset.

On the other hand, the convex optimization solver of 

CVX is applied to the same attenuation losses for a 

comparison. The objective function in the convex optimi-

zation is as follows: 



min∥∥
∥∥

(7)

  ≥

The first  norm find a solution to satisfy the linear system 

and the second  norm prevents the solution from CVX to 

Fig. 3. (Color available online) Bubble size distribu-

tions estimated using CVX and deep ensemble 

Ada-LISTA: true values (a) and estimated values 

from CVX (b) and deep ensemble Ada-LISTA (c). 

100 out of 500 results are displayed for a clear 

performance comparison. The bubble size distri-

bution marked with dashed line (the 55th test sample) 

will be used for a detailed performance investi-

gation.

Fig. 2. (Color available online) Data samples for  

in training dataset. For the visualization, original (or 

unnormalized) bubble size distribution is displayed 

in the range of 0 to 0.01. To generate dynamic 

attenuation loss patterns during training, components 

of specific region in  have non-zero values (the 

first 2 500 samples for ).

Table 1. Summary of dataset.

Dataset
Training / 

Validation
Test

Number of dataset 5 000 / 1 000 500

Input 





Number of 

frequencies 

(Range)

781 

(200 Hz to 8 000 Hz)

Distribution

Activation 

distribution

in specific 

region 

(Fig. 2.)

Gaussian 

distribution

Output 





Number of 

bubble radii 

(Range)

1 500 

(580 μm to 15 000 μm)
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have too-large components. , which controls the balance 

between two  norms, is empirically determined as one. 

The constraint makes all components of solution have 

non-negative values as in the actual bubble population. 

As shown in Fig. 3(b) and (c), estimated results from 

deep ensemble Ada-LISTA are in better agreement with 

true values than CVX. For a quantitative analysis, mean 

square errors calculated using 500 test samples for deep 

ensemble Ada-LISTA and CVX, which correspond to 6.2 

× 10-4, 2.4 × 10-3, respectively. 

For a detailed performance investigation, the specific 

bubble size distribution of the 55th test sample is used and 

the inversion results using CVX and deep ensemble 

Ada-LISTA are shown in Fig. 4(a) and (b), respectively; 

for a clearer comparison, two results are displayed sepa-

rately. The CVX result is in good agreement in terms of 

overall pattern. However, significant fluctuations are 

observed at the small bubble size region, which make the 

CVX result deviated from the true values. While the deep 

ensemble Ada-LISTA estimation also has a gap from the 

true values at the small bubble size region as in the CVX 

result, the fluctuations from CVX are considerably reduced. 

Furthermore, by using the variance of 20 Ada-LISTA 

estimations for deep ensemble, the estimation uncertainty 

can be evaluated [error bars in Fig. 4(b)]. The error bars are 

smaller in the large bubble size region, where the deep 

ensemble Ada-LISTA result is in good agreement with the 

true values. The opposite happens in the small bubble size 

region. From the estimated bubble size distributions, 

attenuation losses can be reconstrcted as shown in Fig. 

4(c). The attenuation losses are very close to true value 

owing to physics-based constraint (∥∥
) in the 

objective or loss function.

V. Conclusion

In this paper, we propose the estimation of the bubble 

size distribution using deep ensemble of PINN with Ada- 

LISTA, which can consider the system’s characteristics. 

This approach improves the bubble inversion perfor-

mance and quantifies the uncertainty of the bubble 

inversion result. 

In future work, we will estimate bubble size distributions 

using attenuation losses from water tank experiments to 

further investigate feasibility and utility of the proposed 

model. 

Fig. 4. (Color available online) Bubble size distri-

butions estimated using CVX (a), deep ensemble 

Ada-LISTA (b) for a specific attenuation loss, and 

reconstructed attenuation loss using the estimated 

bubble size distributions (c). The CVX results are 

deviated from true values by significant fluctuations 

at small bubble size region, which are reduced by 

deep ensemble Ada-LISTA displaying an estimation 

uncertainty with variance. The variances are dis-

played in every four bubble radius indices for clear 

representation.
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