• Title/Summary/Keyword: 딥코팅

Search Result 45, Processing Time 0.023 seconds

Synthesis and Characterization of Sol-Gel Derived Mesoporous Titania/Alumina Membranes (솔젤법에 의한 메조기공 티타니아/알루미나 막의 제조 및 기체투과 특성)

  • Kwon, Hyuk-Taek;Kim, Jin-Soo
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.229-235
    • /
    • 2011
  • In this study, mesoporous titania/alumina membranes were prepared by sol-gel method. Pore structure and phase composition of titania/alumina membranes could be changed by calcination temperature. The addition of alumina into titania membranes retarded anatase-to-rutile phase transformation, resulting in stabilization of pore structures. The 5 time dip-coated membrane calcined at $450^{\circ}C$ is about $10.3{\mu}m$ in thickness with an average pore size of 5 nm. Hydrogen and nitrogen permeances through the membrane were $17.1{\times}10^{-7}mol/m^2{\cdot}s{\cdot}Pa$ and $4.7{\times}10^{-7}mol/m^2{\cdot}s{\cdot}Pa$, respectively. These data were explained by the Knudsen diffusion mechanism.

Bio-Piezoelectric Generator with Silk Fibroin Films Prepared by Dip-Coating Method (딥코팅에 의한 실크 피브로인막으로 제조한 바이오 압전발전기)

  • Kim, Min-Soo;Park, Sang-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.487-494
    • /
    • 2021
  • Piezoelectric generators use direct piezoelectric effects that convert mechanical energy into electrical energy. Many studies were attempted to fabricate piezoelectric generators using piezoelectrics such as ZnO, PZT, PVDF. However, these various inorganic/organic piezoelectric materials are not suitable for bio-implantable devices due to problems such as brittleness, toxicity, bio-incompatibility, bio-degradation. Thus, in this paper, piezoelectric generators were prepared using a silk fibroin film which is bio-compatible by dip-coating method. The silk fibroin films are a mixed state of silk I and silk II having stable β-sheet type structures and shows the d33 value of 8~10 pC/N. There was a difference in output voltages according to the thickness. The silk fibroin generators, coated 10 times and 20 times, revealed the power density of 16.07 μW/cm2 and 35.31 μW/cm2 using pushing tester, respectively. The silk fibroin generators are sensitive to various pressure levels, which may arise from body motions such as finger tapping, foot pressing, wrist shaking, etc. The silk fibroin piezoelectric generators with bio-compatibility shows the applicability as a low-power implantable piezoelectric generator, healthcare monitoring service, and biotherapy devices.

Electrochemical Characteristics of Ultra Battery Anode Material using the Nano Pb/AC for ISG (나노 납/활성탄을 사용한 ISG용 울트라 전지 음극소재의 전기화학적 특성)

  • Hwang, Jin Ung;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.593-599
    • /
    • 2017
  • In order to enhance ultra battery performances, the electrochemical characteristics of nano Pb/AC anode composite was investigated. Through nano Pb adsorption onto activated carbon, nano Pb/AC was synthesized and it was washed under vacuum process. The prepared anode materials was analysed by SEM, BET and EDS. The specific surface area and average pore size of nano Pb/AC composite were $1740m^2/g$ and 1.95 nm, respectively. The negative electrode of ultra battery was prepared by nano Pb/AC dip coating on lead plate. The electrochemical performances of ultra battery were studied using $PbO_2$ (the positive electrode) and prepared nano Pb/AC composite (the negative electrode) pair. Also the electrochemical behaviors of ultra battery were investigated by charge/discharge, cyclic voltammetry, impedance and rate capability tests in 5 M $H_2SO_4$ electrolyte. The initial capacity and cycling performance of the present nano Pb/AC ultra battery were improved with respect to the lead battery and the AC-coated lead battery. These experimental results indicate that the proper addition of nano Pb/AC into the negative electrode can improve the discharge capacity and the long term cycle stability and remarkably suppress the hydrogen evolution reaction on the negative electrode.

The Effects of Surface Insulation Layer on the Magnetic Properties of Nanocrystalline Alloy Ribbons (표면 절연층이 나노결정립 합금 리본의 자기적 특성에 미치는 영향)

  • Oh, Young-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.6
    • /
    • pp.226-231
    • /
    • 2007
  • High frequency loss property of nanocrystalline amorphous ribbon with a high resistivity insulation layer of $TiO_2$ and $SiO_2$ was studied. The insulation layer was fabricated by sol-gel method using dip-coating. The optimum composition ratio of metal alkoxide and slurry for fabrication of insulation layer was established and insulation layer with high adhesion was coated on the nanocrystalline amorphous ribbon. Frequency loss of magnetic core material manufactured on nanocrystalline amorphous ribbon with the surface insulation layer decreased over 40 % compared with that of magnetic core material without surface insulation layer. The insertion loss of an inductive coupler, which was prepared by using magnetic core material coated insulation layer, decreased due to reduction of frequency loss for magnetic core material and insertion loss decreased in proportion to frequency.

Recent Advances in Metal Organic Framework based Thin Film Nanocomposite Membrane for Nanofiltration (나노여과를 위한 금속유기구조체 기반 박막 나노복합막의 최근 발전)

  • Kim, Esther;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.1
    • /
    • pp.35-51
    • /
    • 2021
  • Advancements in thin-film nanocomposite (TFN) membrane technology for nanofiltration is crucial for removing pollutants from natural resources. In recent years, various metal-organic framework (MOF) modifications have been tested to overcome the drawbacks that are inevitable with conventional thin-film composite (TFC) and TFN membranes. In general, MIL-101(Cr), UiO-66, ZIF-8, and HKUST-1 [Cu3(BCT2)] are MOFs that were proven to exhibit excellent membrane performance in terms of solvent permeability and solute rejection; their respective studies are reviewed in this article. Other novelties, such as the simultaneous use of different MOFs and unique MOF layering techniques (e.g., dip-coating, spray pre-disposition, Langmuir-Schaefer film, etc.) are also discussed as they present alternate solutions for membrane enhancement and/or preparation convenience. Not only are these MOF-modified TFN membranes frequently shown to improve separation performance from their respective TFC and TFN membranes, but many reports also explain their potential for a cost-effective and environmentally friendly process. In this review the thin film nanocomposite nanofiltration membrane is discussed.