• 제목/요약/키워드: 딥러닝 추천

검색결과 118건 처리시간 0.042초

딥러닝 기반 온라인 리뷰를 활용한 추천 모델 개발: 레스토랑 산업을 중심으로 (Developing a deep learning-based recommendation model using online reviews for predicting consumer preferences: Evidence from the restaurant industry)

  • 김동언;장동수;엄금철;이가은
    • 지능정보연구
    • /
    • 제29권4호
    • /
    • pp.31-49
    • /
    • 2023
  • 레스토랑 산업의 성장과 함께 레스토랑 오프라인 매장 수는 점차 증가하지만, 소비자는 자신의 선호도에 적합한 레스토랑을 선택하는 데 어려움을 경험하고 있다. 따라서 소비자의 선호도에 맞는 레스토랑을 추천하는 개인화된 추천 서비스의 필요성이 대두하고 있다. 기존 연구에서는 설문조사 및 평점 정보를 활용하여 소비자 선호도를 조사했으나, 이는 소비자의 구체적인 선호도를 효과적으로 반영하는데 어려움이 존재한다. 이러한 배경하에 온라인 리뷰는 방문 동기, 음식 평가 등 레스토랑에 대한 소비자 구체적인 선호도를 효과적으로 반영하기 때문에 필수적인 정보이다. 한편, 일부 연구에서는 리뷰 텍스트에 전통적인 기계학습 기법을 적용하여 소비자의 선호도를 측정하였다. 그러나 이러한 접근 방식은 주변 단어나 맥락을 고려하지 못하는 한계점이 존재한다. 따라서 본 연구는 딥러닝을 효과적으로 활용하여 온라인 리뷰에서 소비자의 선호도를 정교하게 추출하는 리뷰 텍스트 기반 레스토랑 추천 모델을 제안한다. 본 연구에서 제안된 모델은 추출된 높은 수준의 의미론적 표현과 소비자-레스토랑 상호작용을 연결하여 소비자의 선호도를 정확하고 효과적으로 예측한다. 실험 결과에 따르면 본 연구에서 제안된 추천 모델은 기존 연구에서 제안된 여러 모델에 비해 우수한 추천 성능을 보이는 것으로 나타났다.

단문 텍스트의 자연어 처리 기법을 통한 크라우드 펀딩 추천 시스템 개발 (Development of a Recommendation System for Crowdfunding Using NLP in Short Text)

  • 이영아;이선명;이주연;이기용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.466-469
    • /
    • 2021
  • 최근 자연어 처리에 대한 관심이 증가함에 따라 자연어 처리 기술을 활용한 다양한 추천 시스템이 등장하고 있다. 본 논문에서는 자연어 처리를 이용한 서비스를 개발한다. 본 논문에서 개발한 서비스는 KoNLPy 와 Word2Vec 을 이용하여 크라우드 펀딩 프로젝트 창작자 및 후원자에게 키워드 및 키워드와 유사한 단어가 제목에 포함되는 프로젝트를 추천해준다. 단문 텍스트로서 프로젝트 제목을 사용하여 데이터를 자연어 처리 한 후, 딥러닝 모델에 적용시켜 추출한 데이터를 기반으로 창작자와 후원자에게 추천해주는 방식이다. 따라서 본 서비스는 프로젝트 제목 정보를 통한 추천 시스템의 개발로, 나아가 영화, 도서와 같은 콘텐츠 추천 분야에도 적용할 수 있을 것으로 기대한다.

딥러닝을 활용한 개인 성향 분석에 맞춘 여행 추천시스템 (A travel recommendation system tailored to personal tendency analysis using deep learning)

  • 김솔비;조창석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.504-506
    • /
    • 2023
  • 본 연구에서는 기존 여행지 추천의 플랫폼에 있어 개인의 취향에 맞는 여행지 추천이 어렵다는 점을 해결하고자, 비선형적 관계를 해결할 수 있는 NCF 심층신경망 추천시스템을 이용하여 개인의 성향에 따라 여행지를 추천해 주는 시스템을 제안하고 이를 평가한 결과를 보고한다.

추천 시스템에서의 선형 모델과 딥러닝 모델의 데이터 크기에 따른 성능 비교 연구 (A Study Comparing the Performance of Linear and Deep Learning Models in Recommender Systems as a Function of Data Size)

  • 성다훈;임유진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.715-718
    • /
    • 2024
  • 추천 시스템을 통해 사용자의 만족도를 높여 매출 증대까지 기대할 수 있기에, 추천 시스템은 과거부터 활발하게 연구되어 왔다. 추천 시스템은 크게 선형 모델과 비선형 모델로 구분할 수 있는데, 각 모델이 주로 독자적으로 연구되어 통합된 성능 결과를 명확히 알 수 없는 경우가 많아, 두 모델 간 특성 차이를 명확히 파악하여 추천 상황에서 적합한 모델을 선택하기 어려운 문제가 있다. 따라서 본 연구에서는 선형 모델과 비선형 모델을 같은 데이터와 같은 환경, 같은 성능평가 지표로 실험하여 결과를 비교 및 분석해보고자 한다.

Design and Implementation of YouTube-based Educational Video Recommendation System

  • Kim, Young Kook;Kim, Myung Ho
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권5호
    • /
    • pp.37-45
    • /
    • 2022
  • 2020년 기준 대표적인 온라인 동영상 플랫폼인 유튜브에는 1분에 약 500시간의 동영상이 업로드되고 있다. 이에 업로드된 다수의 다양한 동영상을 통해 정보를 획득하는 사용자의 수가 늘고 있어 온라인 동영상 플랫폼들은 더 나은 추천 서비스를 제공하기 위해 노력하고 있다. 현재 사용되고 있는 추천 서비스는 사용자의 시청 기록을 기반으로 사용자에게 동영상을 추천하는데 이는 교육용 동영상과 같이 특정 목적 및 관심사를 다루는 동영상 추천에 좋은 방법이 아니다. 최근 추천 시스템은 사용자의 시청 기록뿐만 아니라 아이템의 콘텐츠 특징을 함께 활용한다. 본 논문에서는 유튜브를 기반으로 교육용 동영상 추천을 위한 교육용 동영상의 콘텐츠 특징을 추출하고, 이를 활용하는 추천 시스템을 설계하여 웹 애플리케이션으로 구현한다. 사용자들의 만족도를 조사하여 추천 시스템의 추천 성능의 만족도 85.36%, 편의성 만족도 87.80%를 보인다.

CNN 및 SVM 기반의 개인 맞춤형 피복추천 시스템: 군(軍) 장병 중심으로 (CNN and SVM-Based Personalized Clothing Recommendation System: Focused on Military Personnel)

  • 박건우
    • 문화기술의 융합
    • /
    • 제9권1호
    • /
    • pp.347-353
    • /
    • 2023
  • 현재 軍(육군) 입대 장병은 신병훈련소에서 신체에 대한 치수 측정(자동, 수동) 및 샘플 피복을 착용해 본 후, 희망하는 치수로 피복을 지급받고 있다. 하지만, 민간 평상복보다 상대적으로 매우 세분화된 치수 체계를 적용하고 있는 軍에서는 이와 같은 치수 측정 과정에서 발생하는 측정된 치수의 낮은 정확도로 인해 지급받은 피복이 제대로 맞지 않아 피복을 교체하는 빈도가 매우 빈번히 발생하고 있다. 뿐만 아니라 서구적으로 변화된 MZ 세대의 체형변화를 반영하지 않고, 10여 년 전(前)에 수집된 구세대 체형 데이터 기반의 치수 체계를 적용함으로써 재고량이 비효율적으로 관리되는 문제점이 있다. 즉, 필요한 규격의 피복은 부족하고 불필요한 규격의 피복재고는 다수 발생하고 있다. 따라서, 피복 교체빈도를 감소시키고 재고관리의 효율성을 향상하기 위해 딥러닝 기반의 신체 치수 자동측정과 빅데이터 분석 및 머신러닝 기반의 "입대 장병 개인 맞춤형 피복 자동 추천 시스템"을 제안한다.

임베딩 기법과 딥러닝 기법을 이용한 영화 추천 시스템 설계 (A Design for Movie Recommender System using Embedding and Deep-Learning Technique)

  • 유원희;임희석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 추계학술발표대회
    • /
    • pp.648-649
    • /
    • 2016
  • 일반적으로 협업 핑터랭 기반의 추천 시스템에서는 사용자와 아이템 간의 상호 작용이 희박하게 나타나는 문제 때문에 성능상의 한계점을 가지고 있다. 이 문제는 전통적으로 사용되었던 기계 학습의 입력 특성들이 의미적으로 관계가 없도록, 독립적으로 표현하기 때문이다. 본 논문에서는 임베딩 기법을 이용하여 서로 독립적으로 표현되었던 아이템들을 의미적으로 표현되는 벡터로 바꾸고, 최근 협업 필터링 기반의 추천 시스템으로 많이 사용되는 RNN을 사용하여 모델링한 시스템을 제안한다. 제안된 모델은 최근에 발표된 추천시스템들과 동등하거나 그 이상의 성능을 보일 것으로 기대된다.

신경망 협업 필터링을 이용한 운동 추천시스템 (Exercise Recommendation System Using Deep Neural Collaborative Filtering)

  • 정우용;경찬욱;이승우;김수현;선영규;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권6호
    • /
    • pp.173-178
    • /
    • 2022
  • 최근, 소셜 네트워크 서비스에서 딥러닝을 활용한 추천시스템이 활발하게 연구되고 있다. 하지만 딥러닝을 이용한 추천시스템의 경우 콜드스타트 문제와 복잡한 연산으로 인해 늘어난 학습시간이 단점으로 존재한다. 본 논문에서는 사용자의 메타데이터를 활용하여 사용자 맞춤형 운동 루틴 추천 알고리즘을 제안한다. 본 논문에서 제안하는 알고리즘은 메타데이터(사용자의 키, 몸무게, 성, 등)를 입력받아 설계된 모델에 적용한다. 본 논문에서 제안한 운동 추천시스템 모델은 matrix factorization 알고리즘과 multi-layer perceptron을 활용한 neural collaborative filtering(NCF) 알고리즘을 기반으로 설계된다. 제안된 모델은 사용자 메타데이터와 운동 정보를 입력받아 학습을 진행한다. 학습이 완료된 모델은 특정 운동이 입력되면 사용자에게 추천도를 제공한다. 실험 결과에서 제안하는 운동 추천시스템 모델이 기존 NCF 모델보다 10% 추천 성능 향상과 50% 학습 시간 단축을 보였다.

딥러닝 기반 한국어 랩 작사 소프트웨어 (Software for Korean Rap Songwriting based on Deep Learning)

  • 최광희;박서진;권태국;구명완
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 추계학술대회
    • /
    • pp.287-289
    • /
    • 2021
  • 해당 소프트웨어는 딥러닝 기반의 언어 모델을 이용하여 한국어 랩을 더 효과적으로 작성할 수 있도록 돕는다. 이 소프트웨어는 단순히 가사를 생성하는 데에 그치지 않고, 라임을 맞추고자 하는 대상 단어와 앞뒤 문맥이 주어졌을 때, 라임과 맥락에 맞는 단어 목록을 추천한다. 작사가는 사용자 친화적인 문서 편집 인터페이스를 통하여 언어 모델과 적극적으로 상호작용을 해 나가며 효율적으로 가사를 만들어나갈 수 있다.

  • PDF

AI 기반 딥러닝 모델을 활용한 반려견 비만도 평가 및 맞춤형 사료 추천 시스템 개발 (Development of an AI-Based Deep Learning Model for Dog Obesity Assessment and Customized Feed Recommendation System)

  • 김여민;전승은;김채린
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 추계학술발표대회
    • /
    • pp.922-923
    • /
    • 2024
  • 반려견의 비만도는 건강에 중대한 영향을 미치지만, 기존의 비만도 평가 방식은 전문가의 평가나 자가검진에 의존하여 접근성이 떨어지거나 정확도가 떨어지는 한계가 있었다. 본 연구는 AI 기반의 딥러닝 모델을 통해 강아지의 비만도를 보다 쉽게 평가할 수 있는 방법을 제안한다. 특히, 클래스 불균형 문제를 데이터 증강 기법으로 해결하여 모델의 성능을 향상시키고, 실시간으로 결과를 제공하는 앱 기반 솔루션을 구현하였다. 이 연구는 기존 모델과 달리 사용자가 촬영한 한 장의 이미지로 비만도를 예측하며, 사용자 친화적인 접근성을 강조한다.