• Title/Summary/Keyword: 딥러닝 융합 영상처리

Search Result 72, Processing Time 0.026 seconds

Real-Time Foreground and Facility Extraction with Deep Learning-based Object Detection Results under Static Camera-based Video Monitoring (고정 카메라 기반 비디오 모니터링 환경에서 딥러닝 객체 탐지기 결과를 활용한 실시간 전경 및 시설물 추출)

  • Lee, Nayeon;Son, Seungwook;Yu, Seunghyun;Chung, Yongwha;Park, Daihee
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.711-714
    • /
    • 2021
  • 고정 카메라 환경에서 전경과 배경 간 픽셀값의 차를 이용하여 전경을 추출하기 위해서는 정확한 배경 영상이 필요하다. 또한, 프레임마다 변화하는 실제 배경과 맞추기 위해 배경 영상을 지속해서 갱신할 필요가 있다. 본 논문에서는 정확한 배경 영상을 생성하기 위해 실시간 처리가 가능한 딥러닝 기반 객체 탐지기의 결과를 입력받아 영상 처리에 활용함으로써 배경을 생성 및 지속적으로 갱신하고, 획득한 배경 정보를 이용해 전경을 추출하는 방법을 제안한다. 먼저, 고정 카메라에서 획득되는 비디오 데이터에 딥러닝 기반 객체 탐지기를 적용한 박스 단위 객체 탐지 결과를 지속적으로 입력받아 픽셀 단위의 배경 영상을 갱신하고 개선된 배경 영상을 도출한다. 이후, 획득한 배경 영상을 이용하여 더 정확한 전경 영상을 획득한다. 또한, 본 논문에서는 시설물에 가려진 객체를 더 정확히 탐지하기 위해서 전경 영상을 이용하여 시설물 영상을 추출하는 방법을 제안한다. 실제 돈사에 설치된 카메라로 부터 획득된 12시간 분량의 비디오를 이용하여 실험한 결과, 제안 방법을 이용한 전경과 시설물 추출이 효과적임을 확인하였다.

A Review of 3D Object Tracking Methods Using Deep Learning (딥러닝 기술을 이용한 3차원 객체 추적 기술 리뷰)

  • Park, Hanhoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.1
    • /
    • pp.30-37
    • /
    • 2021
  • Accurate 3D object tracking with camera images is a key enabling technology for augmented reality applications. Motivated by the impressive success of convolutional neural networks (CNNs) in computer vision tasks such as image classification, object detection, image segmentation, recent studies for 3D object tracking have focused on leveraging deep learning. In this paper, we review deep learning approaches for 3D object tracking. We describe key methods in this field and discuss potential future research directions.

Pre-processing and implementation for intelligent imagery interpretation system (지능형 영상 판독 시스템 설계를 위한 전처리 및 구현)

  • Jeon, TaeHyeon;Na, HyungSun;Ahn, Jinhyun;Im, Dong-Hyuk
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.305-307
    • /
    • 2021
  • 군사 분야에서 사용하는 기존 영상융합체계는 영상에서 미확인 개체를 식별하는 Activity-Based Intelligence(ABI) 기술과 객체들에 대한 지식정보를 관리하는 Structured Observation Management(SOM) 기술을 연동하여 다양한 관점에서 분석하고 있다. 그러나 군사적인 목적을 달성하기 위해서는 미래 정보가 중요하기 때문에 주변 맥락 정보를 통합하여 분석해야 할 필요성이 있으며 이를 위해 주변맥락 정보를 분석하는 딥러닝 모델 적용이 필요하다. 본 논문에서는 딥러닝 모델 기반 영상 판독 시스템 구축을 하기 위한 전처리 과정을 설계하였다. pyhwp 라이브러리를 이용하여 영상 정보 판독 데이터를 파싱 및 전처리를 진행하여 데이터 구축을 진행하였다.

Design of Automation (RPA) for uploading workout videos to YouTube highlights through deep learning facial expression recognition (딥러닝 표정 인식을 통한 운동 영상 유튜브 하이라이트 업로드 자동화(RPA) 설계)

  • Shin, Dong-Wook;Moon, NamMee
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.655-657
    • /
    • 2022
  • 본 논문은 유튜브에 업로드 된 운동 영상을 시청하는 사람의 얼굴 영역을 YoloV3을 이용하여 얼굴 영상에서 눈 및 입술영역을 검출하는 방법을 연구하여, YoloV3은 딥 러닝을 이용한 물체 검출 방법으로 기존의 특징 기반 방법에 비해 성능이 우수한 것으로 알려져 있다. 본 논문에서는 영상을 다차원적으로 분리하고 클래스 확률(Class Probability)을 적용하여 하나의 회귀 문제로 접근한다. 영상의 1 frame을 입력 이미지로 CNN을 통해 텐서(Tensor)의 그리드로 나누고, 각 구간에 따라 객체인 경계 박스와 클래스 확률을 생성해 해당 구역의 눈과 입을 검출한다. 검출된 이미지 감성 분석을 통해, 운동 영상 중 하이라이트 부분을 자동으로 선별하는 시스템을 설계하였다.

An Effectiveness Verification for Evaluating the Amount of WTCI Tongue Coating Using Deep Learning (딥러닝을 이용한 WTCI 설태량 평가를 위한 유효성 검증)

  • Lee, Woo-Beom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.4
    • /
    • pp.226-231
    • /
    • 2019
  • A WTCI is an important criteria for evaluating an mount of patient's tongue coating in tongue diagnosis. However, Previous WTCI tongue coating evaluation methods is a most of quantitatively measuring ration of the extracted tongue coating region and tongue body region, which has a non-objective measurement problem occurring by exposure conditions of tongue image or the recognition performance of tongue coating. Therefore, a WTCI based on deep learning is proposed for classifying an amount of tonger coating in this paper. This is applying the AI deep learning method using big data. to WTCI for evaluating an amount of tonger coating. In order to verify the effectiveness performance of the deep learning in tongue coating evaluating method, we classify the 3 types class(no coating, some coating, intense coating) of an amount of tongue coating by using CNN model. As a results by testing a building the tongue coating sample images for learning and verification of CNN model, proposed method is showed 96.7% with respect to the accuracy of classifying an amount of tongue coating.

Accuracy Evaluation of Brain Parenchymal MRI Image Classification Using Inception V3 (Inception V3를 이용한 뇌 실질 MRI 영상 분류의 정확도 평가)

  • Kim, Ji-Yul;Ye, Soo-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.3
    • /
    • pp.132-137
    • /
    • 2019
  • The amount of data generated from medical images is increasingly exceeding the limits of professional visual analysis, and the need for automated medical image analysis is increasing. For this reason, this study evaluated the classification and accuracy according to the presence or absence of tumor using Inception V3 deep learning model, using MRI medical images showing normal and tumor findings. As a result, the accuracy of the deep learning model was 90% for the training data set and 86% for the validation data set. The loss rate was 0.56 for the training data set and 1.28 for the validation data set. In future studies, it is necessary to secure the data of publicly available medical images to improve the performance of the deep learning model and to ensure the reliability of the evaluation, and to implement modeling by improving the accuracy of labeling through labeling classification.

CG/VR Image Super-Resolution Using Balanced Attention Mechanism (Balanced Attention Mechanism을 활용한 CG/VR 영상의 초해상화)

  • Kim, Sowon;Park, Hanhoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.4
    • /
    • pp.156-163
    • /
    • 2021
  • Attention mechanisms have been used in deep learning-based computer vision systems, including single image super-resolution (SISR) networks. However, existing SISR networks with attention mechanism focused on real image super-resolution, so it is hard to know whether they are available for CG or VR images. In this paper, we attempt to apply a recent attention module, called balanced attention mechanism (BAM) module, to 12 state-of-the-art SISR networks, and then check whether the BAM module can achieve performance improvement in CG or VR image super-resolution. In our experiments, it has been confirmed that the performance improvement in CG or VR image super-resolution is limited and depends on data characteristics, size, and network type.

Image Processing and Deep Learning Techniques for Fast Pig's Posture Determining and Head Removal (돼지의 빠른 자세 결정과 머리 제거를 위한 영상처리 및 딥러닝 기법)

  • Ahn, Hanse;Choi, Wonseok;Park, Sunhwa;Chung, Yongwha;Park, Daihee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.11
    • /
    • pp.457-464
    • /
    • 2019
  • The weight of pig is one of the main factors in determining the health and growth state of pigs, their shipment, the breeding environment, and the ration of feed, and thus measuring the pig's weight is an important issue in productivity perspective. In order to estimate the pig's weight by using the number of pig's pixels from images, acquired from a Top-view camera, the posture determining and the head removal from images are necessary to measure the accurate number of pixels. In this research, we propose the fast and accurate method to determine the pig's posture by using a fast image processing technique, find the head location by using a fast deep learning technique, and remove pig's head by using light weighted image processing technique. First, we determine the pig's posture by comparing the length from the center of the pig's body to the outline of the pig in the binary image. Then, we train the location of pig's head, body, and hip in images using YOLO(one of the fast deep learning based object detector), and then we obtain the location of pig's head and remove an outside area of head by using head location. Finally, we find the boundary of head and body by using Convex-hull, and we remove pig's head. In the Experiment result, we confirmed that the pig's posture was determined with an accuracy of 0.98 and a processing speed of 250.00fps, and the pig's head was removed with an accuracy of 0.96 and a processing speed of 48.97fps.

Deep Learning Model Validation Method Based on Image Data Feature Coverage (영상 데이터 특징 커버리지 기반 딥러닝 모델 검증 기법)

  • Lim, Chang-Nam;Park, Ye-Seul;Lee, Jung-Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.9
    • /
    • pp.375-384
    • /
    • 2021
  • Deep learning techniques have been proven to have high performance in image processing and are applied in various fields. The most widely used methods for validating a deep learning model include a holdout verification method, a k-fold cross verification method, and a bootstrap method. These legacy methods consider the balance of the ratio between classes in the process of dividing the data set, but do not consider the ratio of various features that exist within the same class. If these features are not considered, verification results may be biased toward some features. Therefore, we propose a deep learning model validation method based on data feature coverage for image classification by improving the legacy methods. The proposed technique proposes a data feature coverage that can be measured numerically how much the training data set for training and validation of the deep learning model and the evaluation data set reflects the features of the entire data set. In this method, the data set can be divided by ensuring coverage to include all features of the entire data set, and the evaluation result of the model can be analyzed in units of feature clusters. As a result, by providing feature cluster information for the evaluation result of the trained model, feature information of data that affects the trained model can be provided.

Quality Evaluation of Chest X-ray Images using Region Segmentation based on 3D Histogram (3D 히스토그램 기반 영역분할을 이용한 흉부 X선 영상 품질 평가)

  • Choi, Hyeon-Jin;Bea, Su-Bin;Park, Ye-Seul;Lee, Jung-Won
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.903-906
    • /
    • 2021
  • 인공지능 기술 발전으로, 의료영상 분야에서도 딥러닝 기반 질병 진단 연구가 활발히 진행되고 있다. 딥러닝 모델 개발 시, 학습 데이터 품질은 모델의 성능과 신뢰성에 매우 큰 영향을 미친다. 그러나 의료 분야의 경우 도메인 지식에 대한 진입 장벽이 높아 개발자가 학습에 사용되는 의료영상 데이터의 품질을 평가하기 어렵다. 이로 인해, 많은 의료영상 분야에서는 각 분야의 특성(질병의 종류, 관찰 아나토미 등)에 따른 영상 품질 평가 방법을 제시해왔다. 그러나 기존의 방법은 특정 질병에 초점이 맞춰져, 일반화된 품질 평가 기준을 제시하고 있지 않다. 따라서 본 논문에서는 대부분의 흉부 질환을 진단하기 위한 흉부 X선 영상의 품질을 평가할 수 있는 기준을 제안한다. 우선, 흉부 X선 영상을 대상으로 관찰된 영역인 심장, 횡격막, 견갑골, 폐 등을 분할하여, 3D 히스토그램을 기반으로 각 영역별 통계적인 정밀 품질 평가 기준을 제안한다. 본 연구에서는 JSRT, Chest 14의 오픈 데이터셋을 활용하여 적용 실험을 수행하였으며, 민감도는 97.6%, 특이도는 92.8%의 우수한 성능을 확인하였다.