• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,319, Processing Time 0.027 seconds

Anomaly Detection of Railway Point Machine using CNN (CNN을 이용한 선로전환기의 이상상황 탐지)

  • Lee, Jonguk;Noh, Byeongjoon;Park, Daihee;Chung, Yongwha;Yoon, Sukhan
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.595-596
    • /
    • 2016
  • 열차의 진로를 변경시키는 선로전환기의 고장은 탈선 등과 같은 대형 사고를 유발시킬 수 있는 중요한 시설이다. 따라서 열차운행 안전 측면에서 해당 설비에 대한 모니터링은 필수적이다. 본 논문에서는 선로전환기의 구동 시 발생하는 소리 정보를 이용하여 선로전환기의 이상상황을 탐지하는 시스템을 제안한다. 먼저 제안한 시스템은 소리 센서에서 실시간으로 취득하는 소리 신호를 Power Spectral Density(PSD) 특징으로 변환한다. 추출된 PSD 특징은 이미 성능이 입증된 딥러닝의 대표적인 모델인 Convolutional Neural Network(CNN)에 적용하여 이상상황을 탐지한다. 실제 선로전환기의 전환 시 발생하는 소리 데이터를 취득하여 모의실험을 수행한 결과, 비정상 상황을 안정적으로 탐지함을 확인하였다.

Real-time Gender Classification based on Deep Learning in Embedded System (임베디드 환경에서의 딥 러닝(Deep Learning) 기반 실시간 성별 인식)

  • Jeong, Hyunwook;Kim, Dae Hoe;Baddar, Wisam J.;Ro, Yong Man
    • Annual Conference of KIPS
    • /
    • 2016.04a
    • /
    • pp.745-748
    • /
    • 2016
  • 사물 인터넷(loT)의 확산에 따라 기계가 사용자의 정보를 인식하는 일이 매우 중요해졌다. 그 중에서도 성별은 사용자의 특징을 판단하는 결정적인 요소 중 하나이다. 하지만 아직 성별 인식에 관련된 연구는 여전히 도전적이며 향상시킬 부분이 많이 남아있다. 본 논문에서는 deep-convolutional neural network (DCNN)를 이용하여 높은 성능을 갖는 성별 인식 네트워크를 제안하며, 이를 모바일 GPU 보드에 임베디드 포팅(porting)하여 실시간 성별인식 시스템을 구성한 뒤, PC 환경과 모바일 GPU 환경에서 제안하는 시스템의 성능을 비교, 분석한다.

A Learning and Testing System for Self-Driving using CNN on TORCS (TORCS 환경에서 CNN을 이용한 자율 주행 학습 및 테스트 시스템)

  • Jin, Yong;Lee, Sang-Geol;Sung, Yunsick;Cho, Kyungeun
    • Annual Conference of KIPS
    • /
    • 2017.11a
    • /
    • pp.839-841
    • /
    • 2017
  • 일반적으로 자율 주행에 딥러닝을 적용하기 위해서 실제 차량에 관련 장비를 설치하고 테스트 한다. 본 논문에서는 The Open Racing Car Simulator(TORCS)에서 다양한 신경망 구조를 적용하도록 Convolutional Neural Network(CNN)을 통하여 학습 및 테스트할 수 있는 시스템을 제안한다. 가상 환경에서 테스트함으로써 하드웨어를 구매하거나 제작하지 않아도 되며 신경망 구조를 선택후 학습함으로써 다양한 데이터에 적합한 신경망 구조를 적용할 수 있다.

A Study on Modeling Network Normal Behavior based on Machine Learning (기계학습 기반 네트워크 정상행위 모델링에 관한 연구)

  • Kwon, Sungmoon;Shon, Taeshik
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.164-165
    • /
    • 2018
  • 네트워크 정상행위 모델링이란 대상 네트워크 및 시스템에서 동작 가능한 행위 중 허용된 행위를 모델링하는 것을 의미한다. 정상행위 모델은 해당 모델의 정상 이외 범주의 알려지지 않은 비정상 행위의 탐지 가능성을 가지고 있어 활용도가 높다. 네트워크 및 시스템의 복잡도가 증가할수록 특성의 파악이 힘들며 이로 인해 주요 특징의 누락이 발생할 수 있어 대상 네트워크의 다수의 데이터에 기반한 기계학습 기반의 네트워크 정상행위 모델링에 관한 다양한 연구가 진행되고 있다 본 논문에서는 딥러닝을 포함하여 네트워크 정상행위 모델링에 사용될 수 있는 다양한 기계학습 기반의 기법을 제시한다.

Designing issue prediction system using web media data (웹 미디어 데이터를 이용한 이슈 예측 시스템 설계)

  • Yun, Hyun-Noh;Moon, Nammeee
    • Annual Conference of KIPS
    • /
    • 2019.05a
    • /
    • pp.501-503
    • /
    • 2019
  • IT 기술의 발달에 따라 다양한 웹 미디어의 데이터가 기하급수적으로 증가하고 있으며 이는 비정형 형태의 빅 데이터로 활용도가 매우 높다. 그 중 인터넷 뉴스나 SNS 등은 시간의 흐름에 따라 다양한 이슈들이 서로 영향을 주며 발생, 결합, 분화, 소멸된다. 본 논문에서는 인터넷상에서 발생하는 비정형 데이터들을 수집하여 텍스트 마이닝을 통해 글의 주요이슈 키워드, 카테고리, 날짜 등을 추출한다. 추출한 데이터를 일정 기간별로 나누어 이슈 매핑을 통해 이슈간의 상관관계를 분석한다. 나아가 LSTM 또는 GRU를 이용한 딥러닝을 통해 앞으로의 이슈를 예측하는 시스템 설계를 제안한다.

Cancer Histopathological Image Classification based on Convolutional Neural Network (CNN 기반 암세포 현미경 이미지 분류)

  • Kim, Shin;Yoon, Kyoungro
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.46-48
    • /
    • 2018
  • 최근 수 년간 뉴럴 네트워크 기반 이미지 분류 기법의 성능이 눈에 띄게 향상되었다. 특히 CNN 은 딥 러닝기법을 도입하면서 이미지 분류 정확도가 향상되었으며, 이는 의학 분야 등 다른 분야에도 영향을 주게 되었다. 의학용 이미지의 분류 시스템의 경우, 오분류가 치명적인 결과를 초래할 수 있기 때문에 높은 정확도의 이미지 분류 시스템을 필요로 하게 된다. 본 논문에서는 CNN 기반 암세포 현미경 이미지 분류 기법에 대해 제안한다. 사전에 훈련된 뉴럴 네트워크의 가중치의 일부를 다시 계산하고, 재계산을 통해 얻은 가중치를 기반으로 암세포 현미경 이미지를 분류하며, 분류결과 높은 정확도로 이미지를 분류하는 것을 확인할 수 있다.

  • PDF

Comparison and Analysis of Dense Optical Flow Algorithm for Realtime System (Dense Optical Flow 기술의 실시간 시스템 적용을 위한 성능 비교 및 분석)

  • Kim, Byungjoon;Seo, Changwook;Seo, Yongduek
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.215-216
    • /
    • 2020
  • Optical Flow는 컴퓨터 비전 분야의 많은 응용기술에 사용된다. 객체 탐지, 추적, 연속 영상 보간, 3D Reconstruction과 같은 최근에 활발히 연구되는 여러 분야에서 사용되는 기반 기술이다. 최근 딥러닝을 기반으로 한 다양한 연구가 활발히 진행되어 왔으며 높은 정확도를 보이고 있다. 이런 분야들은 많은 경우에 실시간 시스템에 적용되어 이미지로부터 정보를 연산한다. 본 논문은 MaskFlownet, SelFlow, LiteFlowNet2 등과 같은 높은 정확도를 가진 신경망 네트워크로 추정된 Optical Flow를 살펴본다. 각 신경망 네트워크로 얻어진 정확도를 비교하고 디스플레이 기술과 이미지 센서 기술의 발전으로 사용 수요가 많아진 고화질의 이미지를 실시간으로 처리하는 경우, 적용 가능한 Optical Flow의 성능을 분석하였다.

  • PDF

Spot The Difference Generation System Using Generative Adversarial Networks (생성적 적대 신경망을 활용한 다른 그림 찾기 생성 시스템)

  • Song, Seongheon;Moon, Mikyeong;Choi, Bongjun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.673-674
    • /
    • 2021
  • 본 논문은 집중력 향상 놀이인 다른 그림 찾기를 자신이 좋아하는 주제를 배경으로 쉽게 생성할 수 있는 시스템을 제안한다. 아동기에 주로 진단이 되고 성인기까지 이어질 수 있는 주의력 결핍 과다활동 증후군(ADHD)을 조기에 예방하기 위해 본 논문에서는 선택한 그림의 일부분을 가지고 생성적 적대 신경망을 활용하여 새로운 물체를 생성해 낸 뒤 자연스럽게 원본 그림에 융화될 수 있도록 하는 것이 목표이다. 하나의 다른 그림 찾기 콘텐츠를 만드는 것은 포토샵과 같이 전문성을 가진 툴을 전문가가 오랜 시간 작업해야 하는 내용이다. 전문적인 기술이 필요한 작업 과정을 본 연구를 통해 일반인도 쉽게 작업할 수 있도록 하는 것을 최종 목표로 한다.

  • PDF

Implementation of A System to Prevent Drowsy Driving Using Google ML Kit (구글 ML Kit 을 이용한 졸음 운전 예방 시스템 구현)

  • Park, Jin-A;Lim, Jun-Hwan;Park, Su-Jin;Noh, Giseop
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.574-576
    • /
    • 2021
  • 본 논문에서는 딥러닝을 이용한 구글 ML Kit 를 이용하여 직접적이고 효과적인 졸음운전 예방기술을 구현하였다. 본 연구에서는 눈 상태를 인식하여 졸음을 감지하고 경보음을 발생시켜 교통사고 안전성 향상을 위한 방안을 제안하고 구현하였다. 또한, 정부 공공데이터 활용을 통해 성능테스트를 진행하여 시스템의 성능을 검증하였다.

Designing a 3D-CNN for Non-Contact PPG Signal Acquisition Based on Video Imaging (영상기반 비접촉식 PPG 신호 취득을 위한 3D-CNN 설계)

  • Tae-Wan Kim;Chan-Uk ,Yeom;Keun-Chang Kawk
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.627-629
    • /
    • 2023
  • 생체 신호를 분석하여 사용자의 건강과 정신 상태를 예측하고, 관련 질병에 관해 예방하는 연구가 늘어나고 있다. 생체 신호 중 심박은 사람의 육체, 정신적인 상태를 반영하는 대표적인 신호이지만 기존의 접촉 패드를 통한 ECG나 광학 센서를 통한 PPG로 심박을 예측할 때는 구속적인 환경이 필요하여 일상적인 상황 속에 적용하기 어려웠다. 이러한 단점을 해결하고자 본 논문은 UBFC-RPPG 데이터셋의 동영상 프레임을 RGB 채널마다 다른 가중치를 적용하는 전처리를 하여 학습 데이터의 크기를 줄이면서 정확도를 높이고, 3D-CNN을 활용한 딥러닝으로 순간적인 영상에서도 PPG 신호를 예측할 수 있도록 1초 전처리 영상을 학습한 후, 신호를 예측하는 것을 목표로 한다. 이렇게 비접촉식으로 취득된 신호는 더 다양한 환경에서의 감정분류, 우울증 진단, 질병 감지 등 다양한 분야에 활용될 수 있다.