열차의 진로를 변경시키는 선로전환기의 고장은 탈선 등과 같은 대형 사고를 유발시킬 수 있는 중요한 시설이다. 따라서 열차운행 안전 측면에서 해당 설비에 대한 모니터링은 필수적이다. 본 논문에서는 선로전환기의 구동 시 발생하는 소리 정보를 이용하여 선로전환기의 이상상황을 탐지하는 시스템을 제안한다. 먼저 제안한 시스템은 소리 센서에서 실시간으로 취득하는 소리 신호를 Power Spectral Density(PSD) 특징으로 변환한다. 추출된 PSD 특징은 이미 성능이 입증된 딥러닝의 대표적인 모델인 Convolutional Neural Network(CNN)에 적용하여 이상상황을 탐지한다. 실제 선로전환기의 전환 시 발생하는 소리 데이터를 취득하여 모의실험을 수행한 결과, 비정상 상황을 안정적으로 탐지함을 확인하였다.
Jeong, Hyunwook;Kim, Dae Hoe;Baddar, Wisam J.;Ro, Yong Man
Annual Conference of KIPS
/
2016.04a
/
pp.745-748
/
2016
사물 인터넷(loT)의 확산에 따라 기계가 사용자의 정보를 인식하는 일이 매우 중요해졌다. 그 중에서도 성별은 사용자의 특징을 판단하는 결정적인 요소 중 하나이다. 하지만 아직 성별 인식에 관련된 연구는 여전히 도전적이며 향상시킬 부분이 많이 남아있다. 본 논문에서는 deep-convolutional neural network (DCNN)를 이용하여 높은 성능을 갖는 성별 인식 네트워크를 제안하며, 이를 모바일 GPU 보드에 임베디드 포팅(porting)하여 실시간 성별인식 시스템을 구성한 뒤, PC 환경과 모바일 GPU 환경에서 제안하는 시스템의 성능을 비교, 분석한다.
일반적으로 자율 주행에 딥러닝을 적용하기 위해서 실제 차량에 관련 장비를 설치하고 테스트 한다. 본 논문에서는 The Open Racing Car Simulator(TORCS)에서 다양한 신경망 구조를 적용하도록 Convolutional Neural Network(CNN)을 통하여 학습 및 테스트할 수 있는 시스템을 제안한다. 가상 환경에서 테스트함으로써 하드웨어를 구매하거나 제작하지 않아도 되며 신경망 구조를 선택후 학습함으로써 다양한 데이터에 적합한 신경망 구조를 적용할 수 있다.
네트워크 정상행위 모델링이란 대상 네트워크 및 시스템에서 동작 가능한 행위 중 허용된 행위를 모델링하는 것을 의미한다. 정상행위 모델은 해당 모델의 정상 이외 범주의 알려지지 않은 비정상 행위의 탐지 가능성을 가지고 있어 활용도가 높다. 네트워크 및 시스템의 복잡도가 증가할수록 특성의 파악이 힘들며 이로 인해 주요 특징의 누락이 발생할 수 있어 대상 네트워크의 다수의 데이터에 기반한 기계학습 기반의 네트워크 정상행위 모델링에 관한 다양한 연구가 진행되고 있다 본 논문에서는 딥러닝을 포함하여 네트워크 정상행위 모델링에 사용될 수 있는 다양한 기계학습 기반의 기법을 제시한다.
IT 기술의 발달에 따라 다양한 웹 미디어의 데이터가 기하급수적으로 증가하고 있으며 이는 비정형 형태의 빅 데이터로 활용도가 매우 높다. 그 중 인터넷 뉴스나 SNS 등은 시간의 흐름에 따라 다양한 이슈들이 서로 영향을 주며 발생, 결합, 분화, 소멸된다. 본 논문에서는 인터넷상에서 발생하는 비정형 데이터들을 수집하여 텍스트 마이닝을 통해 글의 주요이슈 키워드, 카테고리, 날짜 등을 추출한다. 추출한 데이터를 일정 기간별로 나누어 이슈 매핑을 통해 이슈간의 상관관계를 분석한다. 나아가 LSTM 또는 GRU를 이용한 딥러닝을 통해 앞으로의 이슈를 예측하는 시스템 설계를 제안한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2018.11a
/
pp.46-48
/
2018
최근 수 년간 뉴럴 네트워크 기반 이미지 분류 기법의 성능이 눈에 띄게 향상되었다. 특히 CNN 은 딥 러닝기법을 도입하면서 이미지 분류 정확도가 향상되었으며, 이는 의학 분야 등 다른 분야에도 영향을 주게 되었다. 의학용 이미지의 분류 시스템의 경우, 오분류가 치명적인 결과를 초래할 수 있기 때문에 높은 정확도의 이미지 분류 시스템을 필요로 하게 된다. 본 논문에서는 CNN 기반 암세포 현미경 이미지 분류 기법에 대해 제안한다. 사전에 훈련된 뉴럴 네트워크의 가중치의 일부를 다시 계산하고, 재계산을 통해 얻은 가중치를 기반으로 암세포 현미경 이미지를 분류하며, 분류결과 높은 정확도로 이미지를 분류하는 것을 확인할 수 있다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.215-216
/
2020
Optical Flow는 컴퓨터 비전 분야의 많은 응용기술에 사용된다. 객체 탐지, 추적, 연속 영상 보간, 3D Reconstruction과 같은 최근에 활발히 연구되는 여러 분야에서 사용되는 기반 기술이다. 최근 딥러닝을 기반으로 한 다양한 연구가 활발히 진행되어 왔으며 높은 정확도를 보이고 있다. 이런 분야들은 많은 경우에 실시간 시스템에 적용되어 이미지로부터 정보를 연산한다. 본 논문은 MaskFlownet, SelFlow, LiteFlowNet2 등과 같은 높은 정확도를 가진 신경망 네트워크로 추정된 Optical Flow를 살펴본다. 각 신경망 네트워크로 얻어진 정확도를 비교하고 디스플레이 기술과 이미지 센서 기술의 발전으로 사용 수요가 많아진 고화질의 이미지를 실시간으로 처리하는 경우, 적용 가능한 Optical Flow의 성능을 분석하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.673-674
/
2021
본 논문은 집중력 향상 놀이인 다른 그림 찾기를 자신이 좋아하는 주제를 배경으로 쉽게 생성할 수 있는 시스템을 제안한다. 아동기에 주로 진단이 되고 성인기까지 이어질 수 있는 주의력 결핍 과다활동 증후군(ADHD)을 조기에 예방하기 위해 본 논문에서는 선택한 그림의 일부분을 가지고 생성적 적대 신경망을 활용하여 새로운 물체를 생성해 낸 뒤 자연스럽게 원본 그림에 융화될 수 있도록 하는 것이 목표이다. 하나의 다른 그림 찾기 콘텐츠를 만드는 것은 포토샵과 같이 전문성을 가진 툴을 전문가가 오랜 시간 작업해야 하는 내용이다. 전문적인 기술이 필요한 작업 과정을 본 연구를 통해 일반인도 쉽게 작업할 수 있도록 하는 것을 최종 목표로 한다.
Park, Jin-A;Lim, Jun-Hwan;Park, Su-Jin;Noh, Giseop
Annual Conference of KIPS
/
2021.11a
/
pp.574-576
/
2021
본 논문에서는 딥러닝을 이용한 구글 ML Kit 를 이용하여 직접적이고 효과적인 졸음운전 예방기술을 구현하였다. 본 연구에서는 눈 상태를 인식하여 졸음을 감지하고 경보음을 발생시켜 교통사고 안전성 향상을 위한 방안을 제안하고 구현하였다. 또한, 정부 공공데이터 활용을 통해 성능테스트를 진행하여 시스템의 성능을 검증하였다.
생체 신호를 분석하여 사용자의 건강과 정신 상태를 예측하고, 관련 질병에 관해 예방하는 연구가 늘어나고 있다. 생체 신호 중 심박은 사람의 육체, 정신적인 상태를 반영하는 대표적인 신호이지만 기존의 접촉 패드를 통한 ECG나 광학 센서를 통한 PPG로 심박을 예측할 때는 구속적인 환경이 필요하여 일상적인 상황 속에 적용하기 어려웠다. 이러한 단점을 해결하고자 본 논문은 UBFC-RPPG 데이터셋의 동영상 프레임을 RGB 채널마다 다른 가중치를 적용하는 전처리를 하여 학습 데이터의 크기를 줄이면서 정확도를 높이고, 3D-CNN을 활용한 딥러닝으로 순간적인 영상에서도 PPG 신호를 예측할 수 있도록 1초 전처리 영상을 학습한 후, 신호를 예측하는 것을 목표로 한다. 이렇게 비접촉식으로 취득된 신호는 더 다양한 환경에서의 감정분류, 우울증 진단, 질병 감지 등 다양한 분야에 활용될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.