Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.497-498
/
2023
많은 인구가 몰리면 군중 추돌 현상과 도미노 현상이 발생하여 압사 사고가 일어나 이에 대한 해결책이 요구된다. 본 논문에서는 위 문제를 개선하고자 보행자 상황 인식을 이용한 재난 경고 시스템을 구현하였다. 이 시스템은 재난관리기관에서 기존에 운영하고 있는 것과 같은 CCTV영상을 이용하여 딥러닝 영상인식 기술을 사용하여 보행자 안전 규정에 따른 보행자 상황을 인식해 재난 상황을 표시해주고, 경고를 한다. 보행자 상황 인식하기 위해 엣지컴퓨터에서 연결된 카메라 영상을 받아 상황인식을 하고, 인식된 상황과 영상을 서버로 전송하여 정보를 저장하고, 상황을 경고 한다. 상황인식을 위해 보행자 데이터는 직접 수집하여 학습시킨 weights 파일을 사용하였다. 보행자 인식은 YOLOv4-tiny를 사용하였고, 위험 단계는 총 4단계로 설정하였다. 이를 활용하여 기존의 CCTV영상을 활용하여 관리자를 보조하여 보행자 재난 상황시에 신속하게 재난을 인식하여 구호 조치를 할 수 있다.
The Transactions of the Korea Information Processing Society
/
v.13
no.8
/
pp.382-387
/
2024
Recently, the amount of adult reading has been continuously decreasing, but the consumption of video content is increasing. Accordingly, there is no information on preferences and behavior patterns for new users, and user evaluation or purchase of new books are insufficient, causing cold start problems and data scarcity problems. In this paper, a hybrid book recommendation system based on video content was proposed. The proposed recommendation system can not only solve the cold start problem and data scarcity problem by utilizing the contents of the video, but also has improved performance compared to the traditional book recommendation system, and even high-quality recommendation results that reflect genre, plot, and rating information-based user taste information were confirmed.
Journal of the Korea Society of Computer and Information
/
v.26
no.2
/
pp.27-37
/
2021
In this paper, we propose Automatic detection system of underground pipe which automatically detects underground pipe to help experts. Actual location of underground pipe does not match with blueprint due to various factors such as ground changes over time, construction discrepancies, etc. So, various accidents occur during excavation or just by ageing. Locating underground utilities is done through GPR exploration to prevent these accidents but there are shortage of experts, because GPR data is enormous and takes long time to analyze. In this paper, To analyze 3D GPR data automatically, we use 3D image segmentation, one of deep learning technique, and propose proper data generation algorithm. We also propose data augmentation technique and pre-processing module that are adequate to GPR data. In experiment results, we found the possibility for pipe analysis using image segmentation through our system recorded the performance of F1 score 40.4%.
제품이나 부품의 잔존 수명을 정확하게 예측할 수 있다면 고장이나 중단으로 인한 손실을 방지하는 것이 가능해질 것이다. 제품의 잔존 수명은 시계열 데이터 분석을 통해 예측될 수 있으며, 최근에는 딥러닝을 이용한 잔존 수명 예측 연구가 활발하게 진행되고 있다. 본 연구에서 우리는 컴퓨터 기반 시스템의 주요 고장 요소가 되고 있는 하드디스크의 잔존 수명을 예측하는 문제에 1D CNN-LSTM 을 이용한 모델을 적용하고, RMSE 와 R-Square 값을 이용해 적용한 모델의 성능을 평가하였다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.42-44
/
2020
TTS(Text-to-Speech) 시스템을 위해서는 한글 이외의 문자열을 한글로 변환해줄 필요가 있다. 이러한 문자열에는 숫자, 특수문자 등의 문자열이 포함되어 있다. 특히 숫자의 경우, 숫자가 사용되는 문맥에 따라 그 발음방법이 달라지는 문제점이 있다. 본 논문에서는 기존의 규칙기반과 한정된 문맥 정보만을 활용할 수 있는 방법이 아닌, 딥러닝을 이용한 방법으로 문맥에 따라 발음방법이 달라지는 숫자 음역의 모호성을 해소하는 방법을 소개한다.
본 논문에서는 패션 매칭의 어려움을 해결해주기 위하여 '무신사' 쇼핑몰을 이용하여 크롤링하고 이를 정제한 dataset을 이용하여 패션 스타일의 핵심 요소 중 하나인 신발에 초점을 맞추어, 이미지 기반의 패션 매칭 시스템인 빅데이터 기반 패션 도우미, Shoes Navigator 를 제안한다. 이를 위해 컴퓨터 비전 및 딥 러닝 기술을 활용하여 이미지에서 의류 항목을 자동으로 감지하고, 스타일, 색상과 같은 패션 특성을 추출한다. 또한, 사용자의 개인적인 스타일을 고려하여 최적의 매칭을 제안하기 때문에 패션 코디 문제를 용이하게 해결할 수 있다.
Recently, with the development of computer vision and deep learning technology, research on human action recognition has been actively conducted for video analysis, video surveillance, interactive multimedia, and human machine interaction applications. Diverse techniques have been introduced for human action understanding and classification by many researchers using RGB image, depth image, skeleton and inertial data. However, skeleton-based action discrimination is still a challenging research topic for human machine-interaction. In this paper, we propose an end-to-end skeleton joints mapping of action for generating spatio-temporal image so-called dynamic image. Then, an efficient deep convolution neural network is devised to perform the classification among the action classes. We use publicly accessible UTD-MHAD skeleton dataset for evaluating the performance of the proposed method. As a result of the experiment, the proposed system shows better performance than the existing methods with high accuracy of 97.45%.
KIPS Transactions on Computer and Communication Systems
/
v.6
no.3
/
pp.159-168
/
2017
Smartphone malware has increased because Smartphone users has increased and smartphones are widely used in everyday life. Since 2012, Android has been the most mobile operating system. Owing to the open nature of Android, countless malware are in Android markets that seriously threaten Android security. Most of Android malware detection program does not detect malware to which bypass techniques apply and also does not detect unknown malware. In this paper, we propose lightweight method for detection of Android malware using static analysis and deep learning techniques. For experiments we crawl 7,000 apps from the Google Play Store and collect 6,120 malwares. The result show that proposed method can achieve 98.05% detection accuracy. Also, proposed method can detect about unknown malware families with good performance. On smartphones, the method requires 10 seconds for an analysis on average.
Journal of the Korea Institute of Information and Communication Engineering
/
v.22
no.10
/
pp.1314-1319
/
2018
The current TW3 - based maximum height prediction technique used in KMAA(Korean Medical Academy of Auxology) is manual and subjective, and it requires a lot of time and effort in the medical treatment, while the interest in the child's growth is very high. In addition, the technique of classifying images using deep learning, especially convolutional neural networks, is used in many fields at a more accurate level than the human eyes, also there is no exception in the medical field. In this paper, we introduce a TW3 algorithm using deep learning, that uses the convolutional neural network to predict the growth level of the left hand bone, to predict the maximum height of child and youth in order to increase the reliability of predictions and improve the convenience of the doctor.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.