• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,343, Processing Time 0.028 seconds

Syllable-Level Lightweight Korean POS Tagger using Transformer Encoder (트랜스포머 인코더를 활용한 음절 단위 경량화 형태소 분석기)

  • Suyoung Min;Youngjoong Ko
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.10
    • /
    • pp.553-558
    • /
    • 2024
  • Morphological analysis involves segmenting morphemes, the smallest units of meaning or grammatical function in a language, and assigning part-of-speech tags to each morpheme. It plays a critical role in various natural language processing tasks, such as named entity recognition and dependency parsing. Much of modern natural language processing relies on deep learning-based language models, and Korean morphological analysis can be broadly categorized into sequence-to-sequence methods and sequential labeling methods. This study proposes a morphological analysis approach using the transformer encoder for sequential labeling to perform syllable-level part-of-speech tagging, followed by morpheme restoration and tagging through a pre-analyzed dictionary. Additionally, the CBOW method was used to extract syllable-level embeddings in lower dimensions, designing a lightweight morphological analyzer model with reduced parameters. The proposed model achieves fast inference speed and low parameter usage, making it efficient for use in resource-constrained environments.

Speech Recognition Model Based on CNN using Spectrogram (스펙트로그램을 이용한 CNN 음성인식 모델)

  • Won-Seog Jeong;Haeng-Woo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.685-692
    • /
    • 2024
  • In this paper, we propose a new CNN model to improve the recognition performance of command voice signals. This method obtains a spectrogram image after performing a short-time Fourier transform (STFT) of the input signal and improves command recognition performance through supervised learning using a CNN model. After Fourier transforming the input signal for each short-time section, a spectrogram image is obtained and multi-classification learning is performed using a CNN deep learning model. This effectively classifies commands by converting the time domain voice signal to the frequency domain to express the characteristics well and performing deep learning training using the spectrogram image for the conversion parameters. To verify the performance of the speech recognition system proposed in this study, a simulation program using Tensorflow and Keras libraries was created and a simulation experiment was performed. As a result of the experiment, it was confirmed that an accuracy of 92.5% could be obtained using the proposed deep learning algorithm.

Key Features and Performance Evaluation of the International Standard for Learning-based Image Compression, JPEG AI (학습 기반 영상 압축 국제 표준(JPEG AI)의 주요 특징 및 성능 평가)

  • Jong-Ho Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.6
    • /
    • pp.1271-1280
    • /
    • 2024
  • JPEG AI refers to an international standard for learning-based image coding, leveraging deep learning techniques that have made groundbreaking advancements in compression performance. It addresses the rapid increase in the generation and utilization of image data, and is one of the latest standardization efforts in this field. JPEG AI aims to meet the requirements of a wide range of applications, including cloud systems, video surveillance, autonomous vehicles, image data monitoring, and media distribution. To achieve this, it reduces the bandwidth and storage space requirements by up to 50% for the same visual quality and provides a framework that allows the compressed bitstream to be directly used for computer vision and image processing tasks. This paper discusses the JPEG AI, explaining its goals, the selection of training datasets, the standardization process, a performance comparison of key proposals, and the future standardization schedule, in order to understand the characteristics of this new international standard.

Analysis of customer churn prediction in telecom industry using Machine learning & Deep learning (머신러닝, 딥러닝을 이용한 통신서비스 이용고객 분석 및 이탈 예측)

  • Kim, Sang-Hwi;Kim, Ki-Won;Kim, Yoo-Sung;Yoon, Tae-Young;Jeon, Jae-Wan
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.568-571
    • /
    • 2020
  • 최근 빅데이터 기술이 다양한 산업과 접목되고 있다. 그 중 고객 이탈 방지가 최우선인 통신사들 또한 예외가 아닐 수 없다. 이에 본 논문은 통신사 데이터에 머신러닝 알고리즘을 접목. 이탈 예측과 데이터 추이를 분석하고, 이를 시각화 하여 일목요연하게 표출하는 과정을 제공함으로서 통신사의 고객 유치 정책을 위한 토대를 마련할 것이다.

머신러닝 기반 사진인식 기술을 활용한 다이어트 AI

  • Noh, Gahyeon;Yun, Ingyeong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.384-387
    • /
    • 2020
  • AI가 각광받고 있는 시대에 발 맞추어 머신러닝, 딥러닝을 활용한 이미지 인식 기술을 구현하였다. 사용자가 원하는 음식 사진을 업로드하면 인공 신경망 알고리즘이 convolution을 수행해 데이터베이스에 학습시켜 두었던 이미지들 가운데 유사도가 가장 높은 수치로 나오는 이미지를 결과로 보여주어, 사용자는 사진만으로도 음식의 칼로리 정보, 칼로리를 소모하기 위한 운동량 등의 정보를 간편하게 알 수 있는 시스템을 구축하였다. 또한 MYSQL과 PHP를 활용하여 자신의 칼로리 정보를 저장하고, 사용자가 매일 입력하는 몸무게의 변화량 등을 실시간으로 확인할 수 있는 등의 데이터베이스 서버를 구축하였다. 스마트폰을 통해 정보를 얻을 수 있도록 어플리케이션을 구성했다.

  • PDF

Denoising Response Generation for Learning Korean Conversational Model (한국어 대화 모델 학습을 위한 디노이징 응답 생성)

  • Kim, Tae-Hyeong;Noh, Yunseok;Park, Seong-Bae;Park, Se-Yeong
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.29-34
    • /
    • 2017
  • 챗봇 혹은 대화 시스템은 특정 질문이나 발화에 대해 적절한 응답을 해주는 시스템으로 자연어처리 분야에서 활발히 연구되고 있는 주제 중 하나이다. 최근에는 대화 모델 학습에 딥러닝 방식의 시퀀스-투-시퀀스 프레임워크가 많이 이용되고 있다. 하지만 해당 방식을 적용한 모델의 경우 학습 데이터에 나타나지 않은 다양한 형태의 질의문에 대해 응답을 잘 못해주는 문제가 있다. 이 논문에서는 이러한 문제점을 해결하기 위하여 디노이징 응답 생성 모델을 제안한다. 제안하는 방법은 다양한 형태의 노이즈가 임의로 가미된 질의문을 모델 학습 시에 경험시킴으로써 강건한 응답 생성이 가능한 모델을 얻을 수 있게 한다. 제안하는 방법의 우수성을 보이기 위해 9만 건의 질의-응답 쌍으로 구성된 한국어 대화 데이터에 대해 실험을 수행하였다. 실험 결과 제안하는 방법이 비교 모델에 비해 정량 평가인 ROUGE 점수와 사람이 직접 평가한 정성 평가 모두에서 더 우수한 결과를 보이는 것을 확인할 수 있었다.

  • PDF

Artificial Intelligence Game System "AlGGAGO" (알까기 인공지능 시스템 "알까고")

  • Lee, Keon-Ho;Yoon, Won-Tak;Park, Jin-Soo;Park, Doo-Soon
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.932-935
    • /
    • 2017
  • 최근 인공지능은 딥러닝, 기계학습 등 인공지능 기술이 발전되면서 기술 상용화가 가시화되고 있다. 이에 따라 인공지능분야는 다른 산업의 핵심 기술로 급부상과 함께 여러 글로벌 기업들이 적극적 투자를 실시하고 있는 추세이다. 이렇게 인공지능 기술이 발전하면서 인공지능 기반 기술 개발에서 타산업의 핵심기술로 프레임이 변화 되고 있으며 차세대 ICT 핵심 기술로 인식이 확산되고 있다. 따라서 본 논문에서는 이러한 인공지능 방법중 지도 학습의 의사 결정 트리 알고리즘을 사용하여 AWS(Amazone Web Service) EMR 서버에서 이를 알까기에 적용하여 알까고 게임 시스템을 구현하였다.

Denoising Response Generation for Learning Korean Conversational Model (한국어 대화 모델 학습을 위한 디노이징 응답 생성)

  • Kim, Tae-Hyeong;Noh, Yunseok;Park, Seong-Bae;Park, Se-Yeong
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.29-34
    • /
    • 2017
  • 챗봇 혹은 대화 시스템은 특정 질문이나 발화에 대해 적절한 응답을 해주는 시스템으로 자연어처리 분야에서 활발히 연구되고 있는 주제 중 하나이다. 최근에는 대화 모델 학습에 딥러닝 방식의 시퀀스-투-시퀀스 프레임워크가 많이 이용되고 있다. 하지만 해당 방식을 적용한 모델의 경우 학습 데이터에 나타나지 않은 다양한 형태의 질의문에 대해 응답을 잘 못해주는 문제가 있다. 이 논문에서는 이러한 문제점을 해결하기 위하여 디노이징 응답 생성 모델을 제안한다. 제안하는 방법은 다양한 형태의 노이즈가 임의로 가미된 질의문을 모델 학습 시에 경험시킴으로써 강건한 응답 생성이 가능한 모델을 얻을 수 있게 한다. 제안하는 방법의 우수성을 보이기 위해 9만 건의 질의-응답 쌍으로 구성된 한국어 대화 데이터에 대해 실험을 수행하였다. 실험 결과 제안하는 방법이 비교 모델에 비해 정량 평가인 ROUGE 점수와 사람이 직접 평가한 정성 평가 모두에서 더 우수한 결과를 보이는 것을 확인할 수 있었다.

  • PDF

Night to day image translation with Generative Adversarial Network (Generative Adversarial Network 를 이용한 야간 도로 영상 보정 시스템)

  • Ahn, Namhyun;Kang, Suk-Ju
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.347-348
    • /
    • 2018
  • 본 논문에서는 야간 도로 영상을 보정하여 주간 영상으로 변환하는 알고리즘을 제안한다. 영상 변환 딥러닝 알고리즘인 Generative Adversarial Network(GAN)를 기반으로 주야간 도로 영상을 학습시켜 주야간 상호 변환이 가능한 시스템을 구현한다. 우선, 입력 영상에 대해 변환된 영상을 출력하는 generative network 를 정의한다. 또한, 변환된 영상을 다시 본래 영상으로 변환하는 inverse network 를 정의한다. Generative network 와 inverse network 를 모두 통과한 결과 영상과 본래 영상의 차 영상을 통해 손실 함수를 정의함으로써 파라미터를 목적에 맞게 학습시킬 수 있다. 또한, generative network 를 통과한 결과 영상과 목적하는 영상을 구분하는 discrimination network 를 정의하여 discrimination network 와 generative network 의 minimax two- player game 을 통해 변환된 영상이 실제 목적 영상과 유사하도록 유도한다. 제안하는 알고리즘을 적용하여 야간 도로 영상의 보정을 수행하면 주변 물체 인식이 어려운 야간 영상을 물체 인식이 용이한 주간 영상으로 변환 할 수 있다.

  • PDF

Deep Learning Based TSV Hole TCD Measurement (딥러닝 기반의 TSV Hole TCD 계측 방법)

  • Jeong, Jun Hee;Gu, Chang Mo;Cho, Joong Hwee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.103-108
    • /
    • 2021
  • The TCD is used as one of the indicators for determining whether TSV Hole is defective. If the TCD is not normal size, it can lead to contamination of the CMP equipment or failure to connect the upper and lower chips. We propose a deep learning model for measuring the TCD. To verify the performance of the proposed model, we compared the prediction results of the proposed model for 2461 via holes with the CD-SEM measurement data and the prediction results of the existing model. Although the number of trainable parameters in the proposed model was about one two-thousandth of the existing model, the results were comparable. The experiment showed that the correlation between CD-SEM and the prediction results of the proposed model measured 98%, the mean absolute difference was 0.051um, the standard deviation of the absolute difference was 0.045um, and the maximum absolute difference was 0.299um on average.