최근 딥러닝 분야에서 모델 학습을 가속화하기 위해, 실수 표현 시 사용하는 비트 수를 줄이는 양자화 연구가 활발히 진행되고 있다. 본 논문은 추천 시스템 모델 중 하나인 행렬 분해 모델(Matrix Factorization, MF)에 대한 양자화 수행 시, 발생할 수 있는 학습 정확도 손실을 방지하기 위한 정밀도 변환 방안을 제시한다. 우리는 실세계 데이터셋을 이용한 실험을 통해, 제안 방안이 적용된 MF 모델은 양자화 기법이 적용되지 않은 모델과 비슷한 추천 정확도를 보이며, 약 30% 개선된 속도로 학습됨을 확인할 수 있었다.
Proceedings of the Korean Society of Computer Information Conference
/
2020.01a
/
pp.145-146
/
2020
현재 4차 산업 혁명 시대에서 가장 중요한 화두는 빅데이터(Big Data), 인공지능이며, 이를 이용한 분야로 생산, 제조 분야에서도 인공지능 영상 인식 기술을 활용한 생산품을 자동으로 분류하고 나아가 품질검사도 할 수 있도록 개발하고 있다. 또한, 로봇을 공장의 생산라인에 운영하여 노동력 감소에 따른 보완이 되고, 제조과정의 효율성 증가와 생산시간 감소로 생산성을 높일 수 있다. 이를 위해 본 논문에서는 실시간 객체감지 기술인 YOLO-v3 알고리즘을 이용해서 PCB보드 인식, 분류할 수 있는 시스템을 개발하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.1232-1235
/
2022
최근 자동차, 철도차량 등 사용자가 있는 기계 시스템에서의 고장 발생 시 사용자의 안전과 관련된 사고로 이어질 수 있어 부품에 대한 모니터링 및 고장 여부 판단은 매우 중요하다. 이러한 부품 중에서 베어링은 회전체와 회전하지 않는 물체 사이에서 회전이 원활하게 이루어질 수 있도록 하는 부품인데, 베어링에 결함이 발생하게 될 경우, 기계 시스템이 정지하거나, 마찰 열에 의해 화재 등의 치명적인 위험이 발생한다. 본 논문에서는 Resnet과 오토인코더를 활용하여 진동 신호 기반의 베어링의 고장을 감지하고 분류할 수 있는 모델을 제안한다. 제안 방법은 raw data를 이미지로 변환하여 입력으로 사용하는데, 이러한 접근을 통해 수집된 데이터의 손실을 최소화하고 데이터가 가지는 정보를 최대한 분석에 활용할 수 있다. 제안 모델의 검증을 위하여 공개된 데이터셋으로 학습/검증 하였고, 제안 방법이 기존 방법과 비교하여 더 높은 F1 Score와 정확도를 보임을 확인하였다.
농축산업계는 현재 고효율의 자동화 시스템을 구축하기 위해 많은 연구들이 진행되고 있다. 가축들에 대한 실시간 건강 관리 시스템 구현을 위해 딥러닝, 인공지능 기술들을 활용한 스마트 축사개발에 박차를 가하고 있다. 가축들의 건강은 수익과 직결되는 것은 물론, 사람의 건강까지 위협할 수 있기 때문에 철저한 관리가 필요한 실정이나 여러 기술적 어려움에 부딪히고 있다. 본 연구소는 이를 해결하기 위해 다양한 변수들을 설정, 수집하여 가축들의 건강을 관측하는 기술을 개발하고 있다. 이 논문에서는 악조건에서 수집된 데이터로 우리 내 돼지를 Tracking 한 실험 결과를 소개하고자 한다.
임상 환경에서 진료시간의 대부분은 환자의 증상을 듣고, 추가 증상을 이끌어내는데 사용된다. 이를 병력 청취라고 하며, 진료에 있어서 가장 기본적이고 필수적인 활동이다. 하지만 병력 청취에 대한 연구가 1940 년대부터 계속되고 있음에도 아직까지 표준이 정립되지 않았으며, 다양한 분야에 접목되는 딥러닝 기술 또한 병력 청취와 관련해서는 연구가 부족한 현실이다. 본 논문에서는 Symptom2Vec 을 새롭게 제안하였으며, 이를 활용하여 질병에 따른 증상의 평균 cosine 유사도 점수(0.962)로 병력 청취의 기준을 확립하였다. 또한 most similar word Top5 를 확인하는 것을 통해 환자의 증상에 따른 유사 증상을 묻는 병력 청취가 가능한 것을 확인하였다. 이를 통해 실제 임상 환경에서의 자동화된 병력 청취 시스템을 제안한다.
본 연구는 당뇨병성 망막증의 자동 분류를 위해 딥러닝 모델을 활용한다. CLAHE 를 사용한 전처리로 이미지의 대비를 향상시켰으며, ResNet50 모델을 기반으로 한 전이학습을 통해 모델의 성능을 향상했다. 또한, 데이터의 불균형을 고려하여 정확도 뿐만 아니라 민감도와 특이도를 평가함으로써 모델의 분류 성능을 종합적으로 평가하였다. 실험 결과, 제안한 방법은 당뇨병성 망막증 분류 작업에서 높은 정확도를 달성하였으나, 양성 클래스의 식별에서 일부 한계가 있었다. 이에 데이터의 품질 개선과 불균형 데이터 처리에 초점을 맞춘 향후 연구 방향을 제시하였다.
악성코드를 탐지하는 기법 중 동적 분석데이터와 같은 시계열 데이터는 프로그램마다 호출되는 API의 수가 모두 다르다. 하지만 딥러닝 모델을 통해 분석할 때는 모델의 입력이 되는 데이터의 크기가 모두 같아야 한다. 이에 본 논문은 TF-IDF(Term Frequency-Inverse Document Frequency)와 슬라이딩 윈도우 기법을 이용해 프로그램의 동적 특성을 유지하면서 데이터의 길이를 일정하게 만들 수 있는 전처리 기법과 LSTM(Long Short-Term Memory) 모델을 통해 정확도(Accuracy) 95.89%, 재현율(Recall) 97.08%, 정밀도(Precision) 95.9%, F1-score 96.48%를 달성했다.
Won-Kyo Choi;Eun-Jun Choi;Hye-Won Yang;Se-Ryeong Kim
Annual Conference of KIPS
/
2024.10a
/
pp.912-913
/
2024
본 논문은 'AI 튜터와 함께하는 매칭 플랫폼' 개발 과정에서의 데이터 수집 및 정제에 대해 다룬다. 이 플랫폼은 사용자에게 개인화된 멘토 매칭 및 강의 추천 서비스를 제공하며, 이를 위해 웹크롤링을 통해 데이터를 수집하고, 그 데이터를 정제하는 과정을 거쳤다. 특히, 요리 레시피 데이터를 기반으로 한 취미 레벨 테스트 기능이 포함되어 있으며, 정제된 데이터를 통해 딥러닝 기반의 추천 알고리즘과 AI 튜터링 시스템을 구축했다. 본 연구는 이러한 시스템이 사용자 맞춤형 학습 경험을 제공하는 데 어떻게 기여하는지 논의한다.
본 논문은 일상생활 속에서 카메라를 통해 사용자의 표정을 분석하여 감정을 인식한다. 분석한 감정을 바탕으로 맞춤형 힐링 콘텐츠를 제공한다. 이 시스템은 인공지능. 딥러닝, H/W, 애플리케이션 등 여러 기술을 활용하여 사용자에게 모바일 앱 형태로 서비스를 제공한다. 바쁘게 돌아가는 현대 사회에서 자신의 감정을 감추고 살아가는 사람들이 많다. 그런 사람들이 자신의 공간에서라도 정확한 감정을 인식하고, 힐링을 받는 것을 목표로 한다.
Research on restaurant recommender systems has been proposed due to the development of the food service industry and the increasing demand for restaurants. Existing restaurant recommendation studies extracted consumer preference information through quantitative information or online review sensitivity analysis, but there is a limitation that it cannot reflect consumer semantic preference information. In addition, there is a lack of recommendation research that reflects the detailed attributes of restaurants. To solve this problem, this study proposed a model that can learn the interaction between consumer preferences and restaurant attributes by applying deep learning techniques. First, the convolutional neural network was applied to online reviews to extract semantic preference information from consumers, and embedded techniques were applied to restaurant information to extract detailed attributes of restaurants. Finally, the interaction between consumer preference and restaurant attributes was learned through the element-wise products to predict the consumer preference rating. Experiments using an online review of Yelp.com to evaluate the performance of the proposed model in this study confirmed that the proposed model in this study showed excellent recommendation performance. By proposing a customized restaurant recommendation system using big data from the restaurant industry, this study expects to provide various academic and practical implications.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.