• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,319, Processing Time 0.028 seconds

Implementation of AI Exercise Therapy System customized for Kidney Disease (신장 질환 맞춤형 AI 운동요법 제공 시스템 구현)

  • Park, Gijo;Lee, Byunghoon;Kim, Kyungseok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.37-42
    • /
    • 2022
  • In this paper, AI methods such as deep learning are applied to provide customized exercise therapy for patients with kidney disease. In order to apply deep learning, a dataset that can determine kidney disease is trained to determine whether it is a kidney disease, and 1RM, which is the user's physical information and muscle strength according to whether it is a disease, can also be calculated through deep learning. The calculated muscle strength of 1RM was converted into resistant exercise for each part through a calculation equation for each part of the body, and was configured to be provided with an aerobic exercise amount tailored to the user's body information. If continuous research is conducted in the manner proposed in this paper, customized exercise therapy can be provided for various diseases.

Performance Comparison for Exercise Motion classification using Deep Learing-based OpenPose (OpenPose기반 딥러닝을 이용한 운동동작분류 성능 비교)

  • Nam Rye Son;Min A Jung
    • Smart Media Journal
    • /
    • v.12 no.7
    • /
    • pp.59-67
    • /
    • 2023
  • Recently, research on behavior analysis tracking human posture and movement has been actively conducted. In particular, OpenPose, an open-source software developed by CMU in 2017, is a representative method for estimating human appearance and behavior. OpenPose can detect and estimate various body parts of a person, such as height, face, and hands in real-time, making it applicable to various fields such as smart healthcare, exercise training, security systems, and medical fields. In this paper, we propose a method for classifying four exercise movements - Squat, Walk, Wave, and Fall-down - which are most commonly performed by users in the gym, using OpenPose-based deep learning models, DNN and CNN. The training data is collected by capturing the user's movements through recorded videos and real-time camera captures. The collected dataset undergoes preprocessing using OpenPose. The preprocessed dataset is then used to train the proposed DNN and CNN models for exercise movement classification. The performance errors of the proposed models are evaluated using MSE, RMSE, and MAE. The performance evaluation results showed that the proposed DNN model outperformed the proposed CNN model.

Development of a Dialogue System Model for Korean Restaurant Reservation with End-to-End Learning Method Combining Domain Specific Knowledge (도메인 특정 지식을 결합한 End-to-End Learning 방식의 한국어 식당 예약 대화 시스템 모델 개발)

  • Lee, Dong-Yub;Kim, Gyeong-Min;Lim, Heui-Seok
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.111-115
    • /
    • 2017
  • 목적 지향적 대화 시스템(Goal-oriented dialogue system)은 텍스트나 음성을 통해 특정한 목적을 수행할 수 있는 시스템이다. 최근 RNN(recurrent neural networks)을 기반으로 대화 데이터를 end-to-end learning 방식으로 학습하여 대화 시스템을 구축하는데에 활용한 연구가 있다. End-to-end 방식의 학습은 도메인에 대한 지식 없이 학습 데이터 자체만으로 대화 시스템 구축을 위한 학습이 가능하다는 장점이 있지만 도메인 지식을 학습하기 위해서는 많은 양의 데이터가 필요하다는 단점이 존재한다. 이에 본 논문에서는 도메인 특정 지식을 결합하여 end-to-end learning 방식의 학습이 가능한 Hybrid Code Network 구조를 기반으로 한국어로 구성된 식당 예약에 관련한 대화 데이터셋을 이용하여 식당 예약을 목적으로하는 대화 시스템을 구축하는 방법을 제안한다. 실험 결과 본 시스템은 응답 별 정확도 95%와 대화 별 정확도 63%의 성능을 나타냈다.

  • PDF

Development of Deep Learning Structure to Improve Quality of Polygonal Containers (다각형 용기의 품질 향상을 위한 딥러닝 구조 개발)

  • Yoon, Suk-Moon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.493-500
    • /
    • 2021
  • In this paper, we propose the development of deep learning structure to improve quality of polygonal containers. The deep learning structure consists of a convolution layer, a bottleneck layer, a fully connect layer, and a softmax layer. The convolution layer is a layer that obtains a feature image by performing a convolution 3x3 operation on the input image or the feature image of the previous layer with several feature filters. The bottleneck layer selects only the optimal features among the features on the feature image extracted through the convolution layer, reduces the channel to a convolution 1x1 ReLU, and performs a convolution 3x3 ReLU. The global average pooling operation performed after going through the bottleneck layer reduces the size of the feature image by selecting only the optimal features among the features of the feature image extracted through the convolution layer. The fully connect layer outputs the output data through 6 fully connect layers. The softmax layer multiplies and multiplies the value between the value of the input layer node and the target node to be calculated, and converts it into a value between 0 and 1 through an activation function. After the learning is completed, the recognition process classifies non-circular glass bottles by performing image acquisition using a camera, measuring position detection, and non-circular glass bottle classification using deep learning as in the learning process. In order to evaluate the performance of the deep learning structure to improve quality of polygonal containers, as a result of an experiment at an authorized testing institute, it was calculated to be at the same level as the world's highest level with 99% good/defective discrimination accuracy. Inspection time averaged 1.7 seconds, which was calculated within the operating time standards of production processes using non-circular machine vision systems. Therefore, the effectiveness of the performance of the deep learning structure to improve quality of polygonal containers proposed in this paper was proven.

Vehicle Analysis Using Deep Learning (딥 러닝을 이용한 차량 분석 연구)

  • Lee, Seung-Bin;Lee, Ju-Heon;Lee, Gye-Hwan;Jeon, Gyeon-Gu
    • Annual Conference of KIPS
    • /
    • 2017.11a
    • /
    • pp.785-788
    • /
    • 2017
  • 우리나라의 차량 범죄율은 국민들의 소득 증가와 더불어 계속해서 증가 중인 추세이다. 현재 상용화 된 차량 번호판 인식은 시스템은 특정 우치에 고정되어 있고, 화면의 특정 영역에 물체가 들어와야만 번호판을 인식할 수 있다. 단순히 그 영역에 들어오지 못하면 번호판을 인식하지 못하고 지나치게 된다. 본 연구는 특정 영역에 구애받지 않고 장소, 화면 어디에서든 차량 번호판을 인식할 수 있게 딥 러닝 기술을 응용하여 범죄차량을 찾아내는 기법을 제안한다. 또한 서버와 연동시켜 실시간으로 범죄차량의 위치를 파악, 주변 경찰들에게 연락을 주어 빠르게 범죄차량을 검거하는 서비스를 제공한다.

Senior Life Logging and Analysis by Using Deep Learning and Captured Multimedia Data (딥 러닝 기반의 API 와 멀티미디어 요소를 활용한 시니어 라이프 데이터 수집 및 상태 분석)

  • Kim, Seon Dae;Park, Eun Soo;Jeong, Jong Beom;Koo, Jaseong;Ryu, Eun-Seok
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.244-247
    • /
    • 2018
  • 본 논문에서는 시니어를 위한 라이프 데이터 수집 및 행동분석 프레임 워크를 설명하고, 이의 부분적 구현을 자세히 설명한다. 본 연구는 시니어를 위한 라이프 데이터를 바탕으로 보호자가 없는 시니어를 보살핌과 동시에, 보호자가 미처 인지하지 못하는 시니어의 비정상적인 상태를 분석하여 판단하는 시스템을 연구한다. 먼저, 시니어가 시간을 많이 소요하는 TV 앞 상황을 가정하고, 방영되는 TV 콘텐츠와 TV 카메라를 이용한 시니어의 영상/음성 정보로 이상상태와 감정상태, TV 콘텐츠에 대한 반응과 반응속도를 체크한다. 구체적으로는 딥 러닝 기반의 API 와 멀티미디어 데이터 분석에서 사용되는 오픈 패키지를 바탕으로, 영상/음성의 키 프레임을 추출하여 감정 및 분위기를 분석하고 시니어의 얼굴 표정 인식, 행동 인식, 음성 인식을 수행한다.

  • PDF

Edge Container Remote Control System using RPC protocol (RPC 프로토콜을 활용한 미디어 분석 엣지 컨테이너 원격 제어 시스템)

  • Oh, Seungtaek;Moon, Jaewon;Kum, Seungwoo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.81-83
    • /
    • 2022
  • 고성능 컴퓨팅 기술과 딥 러닝 기술이 충분한 발전을 거쳐 인공지능 기술은 다양한 분야에서 실제로 적용되고 있다. 인공지능 플랫폼 기술이 사용자에게 적절하게 활용되기 위해서 엣지 컴퓨팅 기반의 마이크로 서비스 아키텍처(MSA)가 주목받고 있다. 이와 관련된 기술을 통해 클라우드 기반의 여러 인공지능 애플리케이션들이 엣지 장치에서 직접 처리가 가능하다면 비용적인 측면뿐 아니라 여러 관점에서 효율적이므로 엣지 컨테이너의 운용 기술에 대한 수요가 높아지고 있다. 이에 따라, 본 논문에서는 엣지 디바이스에 간단한 딥 러닝 서비스를 배포하고 운용할 수 있는 컨테이너를 구현하였다. 또한, REST 통신 방법 이외에 RPC 방식을 사용하여 원격 제어를 가능하게 하도록 구성하였으며, 여러 제어 기능들이 동작함을 확인하였다.

  • PDF

Chatbot for Diagnosis of Pet diseases : Service Development and Distribution (반려동물 질병상담 챗봇 서비스 구현)

  • Bae, Ju-Hyun;Sung, Yae-Won;Yuk, Ye-Eun;Jang, Yun-Hui
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.836-838
    • /
    • 2022
  • 반려동물 시장 및 동물 의료분야의 성장, 동물병원 이용 과정 개선의 필요성으로 반려동물 질병의 시작부터 끝까지 전 과정을 함께하는 원스탑 모바일 애플리케이션을 개발하였다. 증상으로 예상 질병을 진단하는 머신러닝 모델과 자연어 문장을 인식하는 딥러닝 챗봇으로 사용자가 편리하게 반려동물 이상 증상에 대한 예상 질병을 챗봇으로 상담할 수 있도록 구현하였다. 챗봇 시스템을 기반으로 '예상 진단', '질병백과', '문진표', '동물병원' 기능을 추가하여 일관된 기능들로 유기적인 서비스를 구성하였다.

A Study on Open Platform for Smart Maritime Safety and Industries (스마트 해양안전 및 기업지원을 위한 오픈플랫폼에 관한 연구)

  • Sekil Park;Younghoon Yang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.214-214
    • /
    • 2023
  • 최근 인공지능과 데이터 과학이 거의 모든 산업분야에서 많은 변화를 불러오고 있으며, 이를 지원하는 많은 라이브러리와 도구들이 이에 도움을 주고 있다. 그럼에도 불구하고 실제 인공지능과 데이터 과학 기술을 실제 산업 분야에 적용하려면 많은 어려움이 있는 것이 사실이고 이는 해양 분야에서 더욱 두드러진다. 이에 해양안전 및 기업지원을 목표로 개발 중인 오픈플랫폼은 일반적인 인공지능 및 데이터 과학을 위한 시스템과 달리 여러 가지 해양특화 모듈들로 구성된다. 그리고 이러한 해양특화 기능들이 해양안전 분야의 기업들에 기여할 수 있도록 해양특화 데이터와 인공지능 모델 등을 상호간 공유하고 의견을 나눌 수 있는 공간으로 개발해 나갈 계획이다.

  • PDF

Design and Development of Modular Replaceable AI Server for Image Deep Learning in Social Robots on Edge Devices (엣지 디바이스인 소셜 로봇에서의 영상 딥러닝을 위한 모듈 교체형 인공지능 서버 설계 및 개발)

  • Kang, A-Reum;Oh, Hyun-Jeong;Kim, Do-Yun;Jeong, Gu-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.470-476
    • /
    • 2020
  • In this paper, we present the design of modular replaceable AI server for image deep learning that separates the server from the Edge Device so as to drive the AI block and the method of data transmission and reception. The modular replaceable AI server for image deep learning can reduce the dependency between social robots and edge devices where the robot's platform will be operated to improve drive stability. When a user requests a function from an AI server for interaction with a social robot, modular functions can be used to return only the results. Modular functions in AI servers can be easily maintained and changed by each module by the server manager. Compared to existing server systems, modular replaceable AI servers produce more efficient performance in terms of server maintenance and scale differences in the programs performed. Through this, more diverse image deep learning can be included in robot scenarios that allow human-robot interaction, and more efficient performance can be achieved when applied to AI servers for image deep learning in addition to robot platforms.