• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,319, Processing Time 0.026 seconds

Object Detection and Post-processing of LNGC CCS Scaffolding System using 3D Point Cloud Based on Deep Learning (딥러닝 기반 LNGC 화물창 스캐닝 점군 데이터의 비계 시스템 객체 탐지 및 후처리)

  • Lee, Dong-Kun;Ji, Seung-Hwan;Park, Bon-Yeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.303-313
    • /
    • 2021
  • Recently, quality control of the Liquefied Natural Gas Carrier (LNGC) cargo hold and block-erection interference areas using 3D scanners have been performed, focusing on large shipyards and the international association of classification societies. In this study, as a part of the research on LNGC cargo hold quality management advancement, a study on deep-learning-based scaffolding system 3D point cloud object detection and post-processing were conducted using a LNGC cargo hold 3D point cloud. The scaffolding system point cloud object detection is based on the PointNet deep learning architecture that detects objects using point clouds, achieving 70% prediction accuracy. In addition, the possibility of improving the accuracy of object detection through parameter adjustment is confirmed, and the standard of Intersection over Union (IoU), an index for determining whether the object is the same, is achieved. To avoid the manual post-processing work, the object detection architecture allows automatic task performance and can achieve stable prediction accuracy through supplementation and improvement of learning data. In the future, an improved study will be conducted on not only the flat surface of the LNGC cargo hold but also complex systems such as curved surfaces, and the results are expected to be applicable in process progress automation rate monitoring and ship quality control.

Constructing for Korean Traditional culture Corpus and Development of Named Entity Recognition Model using Bi-LSTM-CNN-CRFs (한국 전통문화 말뭉치구축 및 Bi-LSTM-CNN-CRF를 활용한 전통문화 개체명 인식 모델 개발)

  • Kim, GyeongMin;Kim, Kuekyeng;Jo, Jaechoon;Lim, HeuiSeok
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.47-52
    • /
    • 2018
  • Named Entity Recognition is a system that extracts entity names such as Persons(PS), Locations(LC), and Organizations(OG) that can have a unique meaning from a document and determines the categories of extracted entity names. Recently, Bi-LSTM-CRF, which is a combination of CRF using the transition probability between output data from LSTM-based Bi-LSTM model considering forward and backward directions of input data, showed excellent performance in the study of object name recognition using deep-learning, and it has a good performance on the efficient embedding vector creation by character and word unit and the model using CNN and LSTM. In this research, we describe the Bi-LSTM-CNN-CRF model that enhances the features of the Korean named entity recognition system and propose a method for constructing the traditional culture corpus. We also present the results of learning the constructed corpus with the feature augmentation model for the recognition of Korean object names.

Deep Learning Based On-Device Augmented Reality System using Multiple Images (다중영상을 이용한 딥러닝 기반 온디바이스 증강현실 시스템)

  • Jeong, Taehyeon;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.341-350
    • /
    • 2022
  • In this paper, we propose a deep learning based on-device augmented reality (AR) system in which multiple input images are used to implement the correct occlusion in a real environment. The proposed system is composed of three technical steps; camera pose estimation, depth estimation, and object augmentation. Each step employs various mobile frameworks to optimize the processing on the on-device environment. Firstly, in the camera pose estimation stage, the massive computation involved in feature extraction is parallelized using OpenCL which is the GPU parallelization framework. Next, in depth estimation, monocular and multiple image-based depth image inference is accelerated using the mobile deep learning framework, i.e. TensorFlow Lite. Finally, object augmentation and occlusion handling are performed on the OpenGL ES mobile graphics framework. The proposed augmented reality system is implemented as an application in the Android environment. We evaluate the performance of the proposed system in terms of augmentation accuracy and the processing time in the mobile as well as PC environments.

Image Classification of Damaged Bolts using Convolution Neural Networks (합성곱 신경망을 이용한 손상된 볼트의 이미지 분류)

  • Lee, Soo-Byoung;Lee, Seok-Soon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.109-115
    • /
    • 2022
  • The CNN (Convolution Neural Network) algorithm which combines a deep learning technique, and a computer vision technology, makes image classification feasible with the high-performance computing system. In this thesis, the CNN algorithm is applied to the classification problem, by using a typical deep learning framework of TensorFlow and machine learning techniques. The data set required for supervised learning is generated with the same type of bolts. some of which have undamaged threads, but others have damaged threads. The learning model with less quantity data showed good classification performance on detecting damage in a bolt image. Additionally, the model performance is reviewed by altering the quantity of convolution layers, or applying selectively the over and under fitting alleviation algorithm.

Real-time Printed Text Detection System using Deep Learning Model (딥러닝 모델을 활용한 실시간 인쇄물 문자 탐지 시스템)

  • Ye-Jun Choi;Song-Won Kim;Mi-Kyeong Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.523-530
    • /
    • 2024
  • Online, such as web pages and digital documents, have the ability to search for specific words or specific phrases that users want to search in real time. Printed materials such as printed books and reference books often have difficulty finding specific words or specific phrases in real time. This paper describes the development of a deep learning model for detecting text and a real-time character detection system using OCR for recognizing text. This study proposes a method of detecting text using the EAST model, a method of recognizing the detected text using EasyOCR, and a method of expressing the recognized text as a bounding box by comparing a specific word or specific phrase that the user wants to search for. Through this system, users expect to find specific words or phrases they want to search in real time in print, such as books and reference books, and find necessary information easily and quickly.

Diagnosis of Valve Internal Leakage for Ship Piping System using Acoustic Emission Signal-based Machine Learning Approach (선박용 밸브의 내부 누설 진단을 위한 음향방출신호의 머신러닝 기법 적용 연구)

  • Lee, Jung-Hyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.184-192
    • /
    • 2022
  • Valve internal leakage is caused by damage to the internal parts of the valve, resulting in accidents and shutdowns of the piping system. This study investigated the possibility of a real-time leak detection method using the acoustic emission (AE) signal generated from the piping system during the internal leakage of a butterfly valve. Datasets of raw time-domain AE signals were collected and postprocessed for each operation mode of the valve in a systematic manner to develop a data-driven model for the detection and classification of internal leakage, by applying machine learning algorithms. The aim of this study was to determine whether it is possible to treat leak detection as a classification problem by applying two classification algorithms: support vector machine (SVM) and convolutional neural network (CNN). The results showed different performances for the algorithms and datasets used. The SVM-based binary classification models, based on feature extraction of data, achieved an overall accuracy of 83% to 90%, while in the case of a multiple classification model, the accuracy was reduced to 66%. By contrast, the CNN-based classification model achieved an accuracy of 99.85%, which is superior to those of any other models based on the SVM algorithm. The results revealed that the SVM classification model requires effective feature extraction of the AE signals to improve the accuracy of multi-class classification. Moreover, the CNN-based classification can be a promising approach to detect both leakage and valve opening as long as the performance of the processor does not degrade.

End-to-end Document Summarization using Copy Mechanism and Input Feeding (Copy Mechanism과 Input Feeding을 이용한 End-to-End 한국어 문서요약)

  • Choi, Kyoungho;Lee, Changki
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.56-61
    • /
    • 2016
  • 본 논문에서는 Sequence-to-sequence 모델을 생성요약의 방법으로 한국어 문서요약에 적용하였으며, copy mechanism과 input feeding을 적용한 RNN search 모델을 사용하여 시스템의 성능을 높였다. 인터넷 신문기사를 수집하여 구축한 한국어 문서요약 데이터 셋(train set 30291 문서, development set 3786 문서, test set 3705문서)으로 실험한 결과, input feeding과 copy mechanism을 포함한 모델이 형태소 기준으로 ROUGE-1 35.92, ROUGE-2 15.37, ROUGE-L 29.45로 가장 높은 성능을 보였다.

  • PDF

Learning Performance Analysis Using Deep Learning (딥러닝기법을 활용한 학습성과분석)

  • Oh, Jeong-Hoon;Yu, Heonchang
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.711-714
    • /
    • 2018
  • 본 연구의 목적은 교육관리시스템(LMS)에서의 학습활동로그를 바탕으로 학습성과 영향도를 분석하고 이를 예측하기 위한 모델을 개발하는데 있다. 연구방법은 먼저 상관분석을 사용하여 유의미한 변수를 선정하였으며, 딥러닝을 사용하여 예측 모델을 생성하였다. 모델 생성 결과 테스트 데이터 셋에 대해 약 84%의 정확도로 학습성과를 예측할 수 있었다. 본 연구는 온라인 교육환경에서 빅데이터와 인공지능을 적용할 수 있는 새로운 관점을 제공할 것으로 기대한다.

저화질 방송미디어의 고품질 변환 기술 개발 현황

  • Jo, Suk-Hui;Ra, Sang-Jung
    • Broadcasting and Media Magazine
    • /
    • v.27 no.4
    • /
    • pp.23-34
    • /
    • 2022
  • 과거에 제작된 SD/HD급 미디어에 대한 수요가 증가하고 영상처리 기술 분야에서의 인공지능 적용이 확산되면서 딥러닝 기반 저화질 미디어의 고품질 변환 기술 연구가 활발히 수행되고 있다. 본고에서는 SD/HD급으로 기제작된 저화질 미디어를 FHD(Full HD)나 4K-UHD(Ultra HD) 등 고품질 시청 환경에 적합하도록 화질을 개선하여 고품질 미디어로 변환하는데 필요한 주요 요소 기술 및 이를 적용한 고품질 변환 시스템의 개발 현황에 대하여 살펴본다.

A light-weight Gender/Age Estimation model based on Multi-taking Deep Learning for an Embedded System (임베디드 시스템을 위한 멀티태스킹 딥러닝 학습 기반 경량화 성별/연령별 추정)

  • Bao, Huy-Tran Quoc;Chung, Sun-Tae
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.483-486
    • /
    • 2020
  • Age estimation and gender classification for human is a classic problem in computer vision. Almost research focus just only one task and the models are too heavy to run on low-cost system. In our research, we aim to apply multitasking learning to perform both task on a lightweight model which can achieve good precision on embedded system in the real time.