• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,319, Processing Time 0.032 seconds

Corporate Default Prediction Model Using Deep Learning Time Series Algorithm, RNN and LSTM (딥러닝 시계열 알고리즘 적용한 기업부도예측모형 유용성 검증)

  • Cha, Sungjae;Kang, Jungseok
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.1-32
    • /
    • 2018
  • In addition to stakeholders including managers, employees, creditors, and investors of bankrupt companies, corporate defaults have a ripple effect on the local and national economy. Before the Asian financial crisis, the Korean government only analyzed SMEs and tried to improve the forecasting power of a default prediction model, rather than developing various corporate default models. As a result, even large corporations called 'chaebol enterprises' become bankrupt. Even after that, the analysis of past corporate defaults has been focused on specific variables, and when the government restructured immediately after the global financial crisis, they only focused on certain main variables such as 'debt ratio'. A multifaceted study of corporate default prediction models is essential to ensure diverse interests, to avoid situations like the 'Lehman Brothers Case' of the global financial crisis, to avoid total collapse in a single moment. The key variables used in corporate defaults vary over time. This is confirmed by Beaver (1967, 1968) and Altman's (1968) analysis that Deakins'(1972) study shows that the major factors affecting corporate failure have changed. In Grice's (2001) study, the importance of predictive variables was also found through Zmijewski's (1984) and Ohlson's (1980) models. However, the studies that have been carried out in the past use static models. Most of them do not consider the changes that occur in the course of time. Therefore, in order to construct consistent prediction models, it is necessary to compensate the time-dependent bias by means of a time series analysis algorithm reflecting dynamic change. Based on the global financial crisis, which has had a significant impact on Korea, this study is conducted using 10 years of annual corporate data from 2000 to 2009. Data are divided into training data, validation data, and test data respectively, and are divided into 7, 2, and 1 years respectively. In order to construct a consistent bankruptcy model in the flow of time change, we first train a time series deep learning algorithm model using the data before the financial crisis (2000~2006). The parameter tuning of the existing model and the deep learning time series algorithm is conducted with validation data including the financial crisis period (2007~2008). As a result, we construct a model that shows similar pattern to the results of the learning data and shows excellent prediction power. After that, each bankruptcy prediction model is restructured by integrating the learning data and validation data again (2000 ~ 2008), applying the optimal parameters as in the previous validation. Finally, each corporate default prediction model is evaluated and compared using test data (2009) based on the trained models over nine years. Then, the usefulness of the corporate default prediction model based on the deep learning time series algorithm is proved. In addition, by adding the Lasso regression analysis to the existing methods (multiple discriminant analysis, logit model) which select the variables, it is proved that the deep learning time series algorithm model based on the three bundles of variables is useful for robust corporate default prediction. The definition of bankruptcy used is the same as that of Lee (2015). Independent variables include financial information such as financial ratios used in previous studies. Multivariate discriminant analysis, logit model, and Lasso regression model are used to select the optimal variable group. The influence of the Multivariate discriminant analysis model proposed by Altman (1968), the Logit model proposed by Ohlson (1980), the non-time series machine learning algorithms, and the deep learning time series algorithms are compared. In the case of corporate data, there are limitations of 'nonlinear variables', 'multi-collinearity' of variables, and 'lack of data'. While the logit model is nonlinear, the Lasso regression model solves the multi-collinearity problem, and the deep learning time series algorithm using the variable data generation method complements the lack of data. Big Data Technology, a leading technology in the future, is moving from simple human analysis, to automated AI analysis, and finally towards future intertwined AI applications. Although the study of the corporate default prediction model using the time series algorithm is still in its early stages, deep learning algorithm is much faster than regression analysis at corporate default prediction modeling. Also, it is more effective on prediction power. Through the Fourth Industrial Revolution, the current government and other overseas governments are working hard to integrate the system in everyday life of their nation and society. Yet the field of deep learning time series research for the financial industry is still insufficient. This is an initial study on deep learning time series algorithm analysis of corporate defaults. Therefore it is hoped that it will be used as a comparative analysis data for non-specialists who start a study combining financial data and deep learning time series algorithm.

The development of a blind people assistant system using deep learning techniques (딥러닝을 이용한 시각 장애인 보조 시스템 개발)

  • Heo, KyuJin;Oh, JinSook;Kim, HanSaem;Lee, Minhak;Kang, Woochul
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.621-624
    • /
    • 2016
  • 시각장애인의 인구비율은 전체 장애인 인구의 약 10%로 적지 않은 비율을 차지한다. 이러한 시각장애인들에게 가장 위험한 요소는 주변의 물체들이다. 하지만 현재 제시되어 있는 안전 보조 장치(보도블록 등)는 시각 장애인들 스스로가 전방에 어떠한 물체가 있는지 인지하기 어렵다. 본 논문에서는 딥러닝을 이용하여 위험물체에 대한 학습모델을 생성 한 뒤 햅틱 모션 및 음성 안내를 통하여 실시간으로 시각장애인이 위험상황을 인지할 수 있는 시스템을 제안한다.

Smart Mobile to Prevent Infant Accident Using Deep Learning and Video Processing (딥러닝과 영상처리를 활용한 영유아 사고 방지 스마트 모빌)

  • Ham, Seoung-Hoon;Han, Dong-Ho;Park, Yu-Hwan;Choi, Sang-Ik;Kang, Woo-Chul
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.364-367
    • /
    • 2019
  • 영유아에 대한 안전사고는 꾸준히 발생하는 추세지만, 부모의 지속적인 관심만큼 효과적인 해결방안은 발표되지 않고 있다. 이 문제를 해결하기 위해 유아용 모빌에 카메라를 장착하여 아기가 촬영되고 있는 영상을 임베디드 보드에 전송하고, 딥러닝과 영상처리를 통해 영유아의 안전 상황에 대한 판단을 진행한다. 실시간 영상 스트리밍 서비스만을 제공하는 기존의 스마트 모빌에 대한 차별성과 모빌의 동작 오류에 따른 영유아 무방비 상황 노출을 방지하기 위한 이중화 시스템이 적용된 영유아 사고 방지 스마트 모빌을 구현한 후, 성능 평가를 통해 본 시스템의 우수성을 입증했다.

Aesthetic Feature-based Activity Summarization for Senior Life Logging (시니어 라이프 로깅을 위한 심미적 특징 기반의 행동 요약 시스템)

  • Kim, Seondae;Ryu, Il-Woong;Ryu, Jaesung;Mujtaba, Ghulam;Park, Eunsoo;Kim, Seunghwan;Ryu, Eun-Seok
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.25-28
    • /
    • 2019
  • 본 논문은 시니어 라이프 로깅을 위한 데이터베이스를 효과적으로 구축하기 위해 영상의 심미적 특징을 통한 행동 별 영상 요약을 소개한다. 실내의 TV 앞에서 오랜 시간을 보내는 시니어의 상태를 체크하기 위해 일반 카메라 또는 360 카메라를 통해 HD 급 화질 이상의 영상을 주기적으로 수집하고, 이를 머신러닝 또는 딥러닝 기반의 행동인식 시스템에 이용하기 위한 전처리 단계에 응용할 수 있는 방법을 서술한다. 이 연구에서는 영상 데이터에서 얻을 수 있는 색상을 이용한 HSV 히스토그램, 영상신호의 Jitter 를 줄이는 고정도, 움직임 에너지 등을 이용하여 짧은 시간 내에 행동별로 구분된 영상(샷, shot)을 자르고 요약하는 방법을 서술한다.

  • PDF

Incorrect query classification via context-query comparison (본문-질의 비교를 활용한 오답 질의 분류)

  • Han, Sangdo;Yu, Hwanjo;Lee, Gary Geunbae;Myaeng, Sung-Hyon
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.440-442
    • /
    • 2019
  • 본 논문은 딥 러닝 기반의 독해 기술이 풀지 못하는 문제를 분류해내는 기술에 관한 것이다. 해당 연구에서는 독해 데이터 및 시스템 결과 분석을 통해 시스템이 풀지 못하는 문제들의 특징을 도출해내고, 이에 알맞은 전략들을 시도해 보았다. 분석 결과에 따른 시도들은 각 목적에 부합하는 결과를 나타냈으며, 특히 독해 기술의 특징에 기반한 방법론이 효과적이었다. 본 논문에서 제안하는 방법은 본문과 질의 간 유사도 행렬을 활용하는 것으로, 기존의 독해 기술이 본문과 질의의 유사도를 활용하여 정답을 내는 것에 영감을 얻었다.

  • PDF

Through deep learning-based video processing, Design and implementation of Smart Port Parking Information System (딥 러닝 기반 영상처리를 통한 스마트 항만 주차정보시스템 설계 및 구현)

  • Koo, Changhun;Jung, Yoonjoo;Lee, Donggeon
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.1342-1345
    • /
    • 2021
  • 최근 울산항에는 화물차가 정해진 화물차 주차장이 아닌 항만 내외에 불법주차를 하는 사례가 빈번하게 발생하고 있다. 본 논문은 이러한 문제를 해결하고자 화물차 주차장 이용을 활성화하는 방안을 연구하였다. 이에 따라 화물차 주차장의 주차 현황을 실시간으로 제공하는 딥 러닝(YOLOv4) 기반 영상분석방식의 스마트 항만 주차정보시스템을 제안한다. 더불어, 제시한 방안을 통해 주차장 이용이 활성화 되었을 때의 사회적 가치를 산정하여 기존과 비교하였다.

Trandemark detection system using deep learning-based algorithms in a metaverse environment (메타버스 환경에서의 딥 러닝 기반 알고리즘을 활용한 상표권 탐지 시스템)

  • Ji-Eun Lee;Hyung-Su Lee;Yong-Tae Shin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.1-4
    • /
    • 2024
  • 코로나 19(Covide-19)이후 가상과 현실이 융·복합 되어 사회·경제·문학활동과 가치 창출이 가능한 메타버스가 차세대 핵심산업으로 부상하고 있다. 이에 자사 보유 기술, IP(Intellectual Property) 등을 활용하여 메타버스 플랫폼을 구축하고자 하는 기업들이 증가하여 지식재산권을 둔 법적 이슈들이 새롭게 나타나고 있다. 따라서 본 논문에서는 상표권 침해를 보호하기 위하여 딥 러닝 기반 객체 탐지모델인 YOLOv5 모델을 활용한 메타버스 환경에서의 상표권 탐지 시스템을 제안한다.

  • PDF

Design and Implementation of Deep Learning Models for Predicting Energy Usage by Device per Household (가구당 기기별 에너지 사용량 예측을 위한 딥러닝 모델의 설계 및 구현)

  • Lee, JuHui;Lee, KangYoon
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.127-132
    • /
    • 2021
  • Korea is both a resource-poor country and a energy-consuming country. In addition, the use and dependence on electricity is very high, and more than 20% of total energy use is consumed in buildings. As research on deep learning and machine learning is active, research is underway to apply various algorithms to energy efficiency fields, and the introduction of building energy management systems (BEMS) for efficient energy management is increasing. In this paper, we constructed a database based on energy usage by device per household directly collected using smart plugs. We also implement algorithms that effectively analyze and predict the data collected using RNN and LSTM models. In the future, this data can be applied to analysis of power consumption patterns beyond prediction of energy consumption. This can help improve energy efficiency and is expected to help manage effective power usage through prediction of future data.

A Study on Automatic Comment Generation Using Deep Learning (딥 러닝을 이용한 자동 댓글 생성에 관한 연구)

  • Choi, Jae-yong;Sung, So-yun;Kim, Kyoung-chul
    • Journal of Korea Game Society
    • /
    • v.18 no.5
    • /
    • pp.83-92
    • /
    • 2018
  • Many studies in deep learning show results as good as human's decision in various fields. And importance of activation of online-community and SNS grows up in game industry. Even it decides whether a game can be successful or not. The purpose of this study is to construct a system which can read texts and create comments according to schedule in online-community and SNS using deep learning. Using recurrent neural network, we constructed models generating a comment and a schedule of writing comments, and made program choosing a news title and uploading the comment at twitter in calculated time automatically. This study can be applied to activating an online game community, a Q&A service, etc.

Application Target and Scope of Artificial Intelligence Machine Learning Deep Learning Algorithms (인공지능 머신러닝 딥러닝 알고리즘의 활용 대상과 범위 시스템 연구)

  • Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.177-179
    • /
    • 2022
  • In the Google Deepmind Challenge match, Alphago defeated Korea's Sedol Lee (human) with 4 wins and 1 loss in the Go match. Finally, artificial intelligence is going beyond the use of human intelligence. The Korean government's budget for the Digital New Deal is 9 trillion won in 2022, and an additional 301 types of data construction projects for artificial intelligence learning will be secured. From 2023, the industrial paradigm will change with the use and application of learning of artificial intelligence in all fields of industry. This paper conducts research to utilize artificial intelligence algorithms. Focusing on the analysis and judgment of data in artificial intelligence learning, research on the appropriate target and scope of application of algorithms in artificial intelligence machine learning and deep learning learning is conducted. This study will provide basic data for artificial intelligence in the 4th industrial revolution technology and artificial intelligence robot use in the 5th industrial revolution technology.

  • PDF