The Journal of the Convergence on Culture Technology
/
v.7
no.1
/
pp.640-645
/
2021
The deep learning based end-to-end TTS system consists of Text2Mel module that generates spectrogram from text, and vocoder module that synthesizes speech signals from spectrogram. Recently, by applying deep learning technology to the TTS system the intelligibility and naturalness of the synthesized speech is as improved as human vocalization. However, it has the disadvantage that the inference speed for synthesizing speech is very slow compared to the conventional method. The inference speed can be improved by applying the non-autoregressive method which can generate speech samples in parallel independent of previously generated samples. In this paper, we introduce FastSpeech, FastSpeech 2, and FastPitch as Text2Mel technology, and Parallel WaveGAN, Multi-band MelGAN, and WaveGlow as vocoder technology applying non-autoregressive method. And we implement them to verify whether it can be processed in real time. Experimental results show that by the obtained RTF all the presented methods are sufficiently capable of real-time processing. And it can be seen that the size of the learned model is about tens to hundreds of megabytes except WaveGlow, and it can be applied to the embedded environment where the memory is limited.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2022.06a
/
pp.391-393
/
2022
In recent years, technologies forecasting demand based on deep learning and big data have accelerated the smartification of the field of e-commerce, logistics and distribution areas. In particular, ports, which are the center of global transportation networks and modern intelligent logistics, are rapidly responding to changes in the global economy and port environment caused by the 4th industrial revolution. Port traffic forecasting will have an important impact in various fields such as new port construction, port expansion, and terminal operation. Therefore, the purpose of this study is to compare the time series analysis and deep learning analysis, which are often used for port traffic prediction, and to derive a prediction model suitable for the future container prediction of Busan Port. In addition, external variables related to trade volume changes were selected as correlations and applied to the multivariate deep learning prediction model. As a result, it was found that the LSTM error was low in the single-variable prediction model using only Busan Port container freight volume, and the LSTM error was also low in the multivariate prediction model using external variables.
Proceedings of the Korean Society of Disaster Information Conference
/
2017.11a
/
pp.339-340
/
2017
화학공장의 누출사고는 초기에 적절히 대응하지 못할 경우 화재 폭발과 같은 2차 3차의 복합재난사고로 확산될 위험성이 매우 높다. 이러한 이유로 누출사고 발생 초기에 누출이 발생한 지점을 신속히 파악하여 현장안전요원에게 알림으로써, 보다 체계적이고 효율적인 초기대응을 가능하게 하여, 사고피해를 완화시킬 수 있는 통합적인 누출사고 대응시스템 구축은 매우 중요하다고 할 수 있다. 본 연구에서는, 통합적인 누출사고 대응시스템 구축을 위한 선행연구로, 딥러닝 기반의 누출원추적 모델 개발을 제안한다. 여수에 위치한 실제 화학공장을 대상으로 누출사고 시나리오에 대한 Computational Fluid Dynamics (CFD) 시뮬레이션을 진행한 뒤, 화학공장 경계면에 배치된 각 센서별 위치에서의 농도, 풍향 그리고 풍속데이터를 추출하고, 센서 좌표를 추가하여 인공신경망을 학습시켰다. 학습된 모델은 40개의 누출후보군에 대해 학습에 사용되지 않은 상황들에서도 75.43%의 정확도로 누출이 일어난 지점을 실시간 예측해냄을 확인하였다. 또한 누출지점 예측이 일치하지 않은 경우도, 예측된 지점이 실제 누출이 일어난 지점과 물리적으로 매우 인접함을 확인함으로써 제안된 모델을 실제 현장에 적용할시 기대되는 효과는 더 클 것으로 판단하였다.
Recently, technologies for efficient power grid operation have become important due to climate change. For this reason, predicting power demand using deep learning is being considered, and it is necessary to understand the influence of characteristics of each region, industrial structure, and climate. This study analyzed the power demand of New Jersey in US, with a high urbanization rate and a large service industry, and West Virginia in US, a low urbanization rate and a large coal, energy, and chemical industries. Using recurrent neural network algorithm, the power demand from January 2020 to August 2022 was learned, and the daily and weekly power demand was predicted. In addition, the power grid operation based on the power demand forecast was discussed. Unlike previous studies that have focused on the deep learning algorithm itself, this study analyzes the regional power demand characteristics and deep learning algorithm application, and power grid operation strategy.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.175-177
/
2021
The parking area for the disabled is a parking facility for the pedestrian disabled and is a parking space for securing pedestrian safety passage for the disabled. However, due to the lack of social awareness of areas for the disabled, the use of parking areas is restricted, and violations such as illegal parking and obstruction of parking are increasing every year. Therefore, in this study, we propose a system to crack down on illegal parking in handicapped parking areas using the YOLOv5 model, a deep learning object recognition model to improve parking interference within parking spaces.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.630-633
/
2020
무의식적인 손-얼굴의 접촉으로 인한 감염의 문제점을 해결하기 위해, 얼굴 만지기 행동을 인식할 필요가 있다. 본 연구는 최근 각광을 받는 딥러닝 기술을 이용하여 비디오 영상에서 얼굴 만지기 행동 인식에 대한 연구이다. 우선, 비디오 영상에서 얼굴 만지기와 관련된 11 가지 행동에 대한 시, 공간적 특징을 컨볼루션 신경망을 통해 추출한다. 추출된 정보는 각 행동 레이블로 인코딩되어 비디오 영상에서 얼굴 만지기 행동을 분류한다. 또한, 3D, 2D 컨볼루션 신경망의 대표 네트워크인 I3D, MobileNet v3에 대해 비교 실험을 진행한다. 제안하는 시스템을 적용하여 인간의 행동을 분류하는 실험을 진행했을 때, 얼굴을 만지는 행동을 99%의 확률로 구분했다. 이 시스템을 이용하여 일반인이 무의식적인 얼굴 만지기 행동에 대해서 정량적으로 또는 적시적으로 인식을 하여, 안전한 위생 습관을 확립하여 감염의 확산방지에 도움을 줄수 있기를 바란다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.3
/
pp.333-340
/
2022
The COVID-19 has made everyone anxious and people need to keep their distance. It is necessary to conduct collective assessment and screening of college students' mental health in the opening season of every year. This study uses and trains a multi-layer perceptron neural network model for deep learning to identify facial emotions. After the training, real pictures and videos were input for face detection. After detecting the positions of faces in the samples, emotions were classified, and the predicted emotional results of the samples were sent back and displayed on the pictures. The results show that the accuracy is 93.2% in the test set and 95.57% in practice. The recognition rate of Anger is 95%, Disgust is 97%, Happiness is 96%, Fear is 96%, Sadness is 97%, Surprise is 95%, Neutral is 93%, such efficient emotion recognition can provide objective data support for capturing negative. Deep learning emotion recognition system can cooperate with traditional psychological activities to provide more dimensions of psychological indicators for health.
Tomato crops are easy to expose to disease and spread in a short period of time, so late measures against disease are directly related to production and sales, which can cause damage. Therefore, there is a need for a service that enables early prevention by simply and accurately diagnosing tomato diseases in the field. In this paper, we construct a system that applies a deep learning-based model in which ImageNet transition is learned in advance to classify and serve nine classes of tomatoes for disease and normal cases. We use the input of MobileNet, ResNet, with a deep learning-based CNN structure that builds a lighter neural network using a composite product for the image set of leaves classifying tomato disease and normal from the Plant Village dataset. Through the learning of two proposed models, it is possible to provide fast and convenient services using MobileNet with high accuracy and learning speed.
Gi-Taek An;Woo-Seok Choi;Jun-Yong Park;Jung-Min Park;Kyung-Soon Lee
The Transactions of the Korea Information Processing Society
/
v.13
no.5
/
pp.221-226
/
2024
In information retrieval, queries come in various types, ranging from abstract queries to those containing specific keywords, making it a challenging task to accurately produce results according to user demands. Additionally, search systems must handle queries encompassing various elements such as typos, multilingualism, and codes. Reranking is performed through training suitable documents for queries using DeBERTa, a deep learning model that has shown high performance in recent research. To evaluate the effectiveness of the proposed method, experiments were conducted using the test collection of the Product Search Track at the TREC 2023 international information retrieval evaluation competition. In the comparison of NDCG performance measurements regarding the experimental results, the proposed method showed a 10.48% improvement over BM25, a basic information retrieval model, in terms of search through query error handling, provisional relevance feedback-based product title-based query expansion, and reranking according to query types, achieving a score of 0.7810.
Annual Conference on Human and Language Technology
/
2017.10a
/
pp.133-136
/
2017
공간 정보 추출은 대량의 텍스트 문서에서 자연어로 표현된 공간 관련 개체 및 관계를 추출하는 것으로 질의응답 시스템, 챗봇 시스템, 네비게이션 시스템 등에서 활용될 수 있다. 본 연구는 한국어에 나타나 있는 공간 개체들을 효과적으로 추출하기 위한 앙상블 기법이 적용된 Bidirectional LSTM-CRF 모델을 소개한다. 한국어 공간 정보 말뭉치를 이용하여 실험한 결과, 기존 모델보다 매크로 평균이 향상되어 전반적인 공간 관계 추출에 유용할 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.