Proceedings of the Korean Society of Broadcast Engineers Conference
/
2017.06a
/
pp.26-28
/
2017
스마트폰 보유율과 모바일 이용 행태가 급변함에 따라 방송사에서는 양방향 서비스를 포함한 다양한 방송 서비스를 제공하려고 노력하고 있다. 양방향 서비스 방송에서 시청자가 보낸 문구를 실제 화면에 보여주기까지 PD 와 담당자들의 수작업이 필요하다. 하지만 하루 평균 약 7,200 건 (MBC 오늘아침 소통중계)의 양방향 서비스 관련 로그가 남게 되어, PD 가 일일이 판별하기에는 많은 노력이 따른다. 이러한 불필요한 노력을 줄이기 위해 본 논문에서는 감정 분석을 이용한 딥러닝 인공지능 기반 양방향 서비스 방송 소프트웨어 시스템을 제안한다. 첫째, 시청자들이 전송한 의견, 건의사항, 내용 등을 전처리 과정을 진행한다. 둘째, 감정 사전을 이용해 전처리 된 단어와 비교하여 시청자가 보낸 문구의 감정 점수를 계산한다. 셋째, 과거 실제 방송에 송출된 시청자 문구를 감정 점수와 함께 딥러닝을 이용하여 훈련시킨다. 본 논문의 성능을 평가하기 위해, 2017 년 생방송 오늘아침 소통중계에 사례연구를 진행하였고 효율성을 보였다. 앞으로 이러한 양방향 서비스 방송 소프트웨어 시스템 도입으로, PD 가 방송 제작에 더욱 집중 할 수 있도록 차별화된 방송을 준비하는데 크게 기여할 것이라 기대한다.
Journal of Korean Tunnelling and Underground Space Association
/
v.25
no.6
/
pp.555-567
/
2023
The cracks in the tunnel are currently determined through visual inspections conducted by inspectors based on images acquired using tunnel imaging acquisition systems. This labor-intensive approach, relying on inspectors, has inherent limitations as it is subject to their subjective judgments. Recently research efforts have actively explored the use of deep learning to automatically detect tunnel cracks. However, most studies utilize public datasets or lack sufficient objectivity in the analysis process, making it challenging to apply them effectively in practical operations. In this study, we selected test datasets consisting of images in the same format as those obtained from the actual inspection system to perform an objective evaluation of deep learning models. Additionally, we introduced ensemble techniques to complement the strengths and weaknesses of the deep learning models, thereby improving the accuracy of crack detection. As a result, we achieved high recall rates of 80%, 88%, and 89% for cracks with sizes of 0.2 mm, 0.3 mm, and 0.5 mm, respectively, in the test images. In addition, the crack detection result of deep learning included numerous cracks that the inspector could not find. if cracks are detected with sufficient accuracy in a more objective evaluation by selecting images from other tunnels that were not used in this study, it is judged that deep learning will be able to be introduced to facility safety inspection.
Artificial Intelligence is establishing itself as a familiar tool from an intractable concept. In this trend, financial sector is also looking to improve the problem of existing system which includes Fraud Detection System (FDS). It is being difficult to detect sophisticated cyber financial fraud using original rule-based FDS. This is because diversification of payment environment and increasing number of electronic financial transactions has been emerged. In order to overcome present FDS, this paper suggests 3 types of artificial intelligence models, Generative Adversarial Network (GAN), Deep Neural Network (DNN), and Convolutional Neural Network (CNN). GAN proves how data imbalance problem can be developed while DNN and CNN show how abnormal financial trading patterns can be precisely detected. In conclusion, among the experiments on this paper, WGAN has the highest improvement effects on data imbalance problem. DNN model reflects more effects on fraud classification comparatively.
The proposed system is composed of two parts, an AI physical fitness measurement part and an AI physical fitness management part. In the AI fitness measurement part, a guide to physical fitness measurement and accurate calculation of the measured value are performed through deep learning-based pose recognition. Based on these measurements, the AI fitness management part designs personalized exercise programs and provides them to dedicated smart applications. To guide the measurement posture, the posture of the subject to be measured is photographed through a webcam and the skeleton line is extracted. Next, the skeletal line of the learned preparation posture is compared with the extracted skeletal line to determine whether or not it is normal, and voice guidance is provided to maintain the normal posture.
Kim, HyunJeong;Yoo, Seoyeon;Im, HyoGyeong;Kim, Kang-Gyoo;Yun, NaRi;Ha, Ok-Kyoon
Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.535-536
/
2021
현대의 스트레스 케어는 대부분 비디오 시청, 상담, 취미 활동 등을 통해 진행된다. 시각, 청각을 스트레스 케어에 활용한 사례는 이미 일상에서 쉽게 접할 수 있음으로 다른 새로운 감각을 요구하고 있다. 본 논문에서는 스트레스 케어를 목적으로, 생체정보를 대상으로 딥러닝 기술 기반의 '사용자 스트레스 및 효과적인 스트레스 해소 요소 판단 알고리즘 모델'을 사용하는 서비스 제공 시스템을 설계한다. 생체정보는 손목시계형 웨어러블을 통해 수집된 심박수, 혈압, 체온, 산소포화도, ECG 등 생체데이터를 사용한다. 제시하는 방법은 실시간으로 수집된 생체정보를 알고리즘, 모델을 통해 스트레스 수치를 예측하여 사용자에게 적절한 음악과 조명을 이용한 시청각적 요소와 아로마 요법을 이용한 후각적 요소를 제공한다.
Proceedings of the Korean Society of Computer Information Conference
/
2020.07a
/
pp.701-702
/
2020
본 논문에서는 Jetson-Nano와 데스크탑에서 OpenCV와 YOLOv3 실시간 객체 인식 알고리즘을 이용하여 웹캠을 통해 주차장 등의 출입 차량 인식 통계 시스템을 개발하였다. 최근 에지컴퓨팅에 관심이 증가하고 있는 시점에서 Nvidia사에서 개발하여 보급하고 있는 Jetson-Nano에 YOLOv3 tiny와 OpenCV를 이용하여 차량인식을 수행하고, 구글에서 개발한 오픈 소스 Tesseract-OCR을 이용해 차량번호인식하여 입출차 혹은 주차시 차량정보를 확인할 수 있다. 딥러닝 학습 알고리즘에서 전기차 번호판의 특징점을 인식하여 전기차를 판별하여 일반차량이 전기차 주차구역에 불법주차하는 것을 모니터링할 수도 있다. 출입한 차량 데이터 베이스에서 입출차 시각, 차량번호, 전기차여부등이 확인 가능하다.
Kim, Gun-hee;Kim, Hyeon-jeong;Kim, Jun-yeong;Lee, Jun-yeob;Lee, Yoon-soo;Yun, Tae-jin
Proceedings of the Korean Society of Computer Information Conference
/
2022.01a
/
pp.317-318
/
2022
최근 인공지능 기술이 발전함에 따라 자율주행, 첨단 운전자 지원 시스템과 같은 기술들이 개발되고 있다. 이런 기술들은 교통사고를 예방하여 사망률 등을 감소시키고, 운전자의 편의성을 향상시킨다. 본 논문에서는 자율주행과 첨단 운전자 지원 시스템에서 사용할 수 있는 기술들을 개발하고, 이를 RC카에 적용하여 구현하였고, 인공트랙에서 실험하여 평가하였다. 딥러닝 기반 실시간 객체 인식 및 Opencv 를 이용한 차선 인식기술을 통해 차선을 인식하여 이탈하지 않고 주행하며 표지판 등 객체를 인식하여 상황에 따른 대응으로 모터를 제어하는 기술을 개발하고 인공트랙을 자율주행하는 RC카를 구현하고 실험하였다.
Ham, Kyoung-Youn;Lee, Jung-Woo;Lee, Jang-Hyeon;Kang, Gil-Nam;Jo, Young-Jun;Park, Dong-Hoon;Ryoo, Myung-chun
Proceedings of the Korean Society of Computer Information Conference
/
2022.01a
/
pp.277-278
/
2022
최근 전동킥보드 보급이 이루어지면서 이와 관련된 교통사고가 증가하고 있다. 이에 따라 전동킥보드 주행 시 헬멧 착용을 의무화하는 도로교통법 개정안이 시행되고 있지만, 물리적으로 대부분 현장에서 단속이 어렵다. 본 논문에서는 딥러닝 영상인식 기술을 활용한 객체검출(object detection) 모델인 YOLOv4를 기반으로 전동킥보드 사용자의 헬멧 미착용 검출시스템을 제안하였다. 이를 통해 전동킥보드 주행 시 헬멧 착용 여부를 효율적으로 단속하는데 활용 할 수 있을 것으로 기대한다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.24
no.1
/
pp.175-180
/
2024
This paper investigates the effect of a deep learning-based system on data labeling task productivity by individuals with developmental disabilities. It was found that interventions, particularly those using AI, significantly improved productivity compared to self-serving task. AI interventions were notably more effective than job coach-led approaches. This research underscores the positive role of AI in enhancing task efficiency for those with developmental disabilities. This study is the first to apply AI technology to the data labeling tasks of individuals with developmental disabilities and highlighting deep learning's potential in vocational training and productivity enhancement for this group.
Journal of the Korea Institute of Information and Communication Engineering
/
v.22
no.3
/
pp.451-457
/
2018
We propose an automatic detection and classification system of sewer damage database based on artificial intelligence and deep learning. In order to optimize the performance, we implemented a robust system against various environmental variations such as illumination and shadow changes. In our proposed system, a crack detection and damage classification method using a deep learning based Convolutional Neural Network (CNN) is implemented. For optimal results, 9,941 CCTV images with $256{\times}256$ pixel resolution were used for machine learning on the damaged area based on the CNN model. As a result, the recognition rate of 98.76% was obtained. Total of 646 images of $720{\times}480$ pixel resolution were extracted from various sewage DB for performance evaluation. Proposed system presents the optimal recognition rate for the automatic detection and classification of damage in the sewer DB constructed in various environments.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.