• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,296, Processing Time 0.027 seconds

Design of deep learning based hardware accelerator for digital watermarking (디지털 워터마킹을 위한 딥러닝 기반 하드웨어 가속기의 설계)

  • Lee, Jae-Eun;Seo, Young-Ho;Kim, Dong-Wook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.544-545
    • /
    • 2020
  • 본 논문에서는 영상 콘텐츠의 지적재산권 보호를 위하여 딥 러닝을 기반으로 하는 워터마킹 시스템 및 하드웨어 가속기 구조를 제안한다. 제안하는 워터마킹 시스템은 호스트 영상과 워터마크가 같은 해상도를 갖도록 변화시키는 전처리 네트워크, 전처리 네트워크를 거친 호스트 영상과 워터마크를 정합하여 워터마크를 삽입하는 네트워크, 그리고 워터마크를 추출하는 네트워크로 구성된다. 이 중 호스트 영상의 전처리 네트워크와 삽입 네트워크를 하드웨어로 설계한다.

  • PDF

Research Trend of the Remote Sensing Image Analysis Using Deep Learning (딥러닝을 이용한 원격탐사 영상분석 연구동향)

  • Kim, Hyungwoo;Kim, Minho;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.819-834
    • /
    • 2022
  • Artificial Intelligence (AI) techniques have been effectively used for image classification, object detection, and image segmentation. Along with the recent advancement of computing power, deep learning models can build deeper and thicker networks and achieve better performance by creating more appropriate feature maps based on effective activation functions and optimizer algorithms. This review paper examined technical and academic trends of Convolutional Neural Network (CNN) and Transformer models that are emerging techniques in remote sensing and suggested their utilization strategies and development directions. A timely supply of satellite images and real-time processing for deep learning to cope with disaster monitoring will be required for future work. In addition, a big data platform dedicated to satellite images should be developed and integrated with drone and Closed-circuit Television (CCTV) images.

Fat Client-Based Abstraction Model of Unstructured Data for Context-Aware Service in Edge Computing Environment (에지 컴퓨팅 환경에서의 상황인지 서비스를 위한 팻 클라이언트 기반 비정형 데이터 추상화 방법)

  • Kim, Do Hyung;Mun, Jong Hyeok;Park, Yoo Sang;Choi, Jong Sun;Choi, Jae Young
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.3
    • /
    • pp.59-70
    • /
    • 2021
  • With the recent advancements in the Internet of Things, context-aware system that provides customized services become important to consider. The existing context-aware systems analyze data generated around the user and abstract the context information that expresses the state of situations. However, these datasets is mostly unstructured and have difficulty in processing with simple approaches. Therefore, providing context-aware services using the datasets should be managed in simplified method. One of examples that should be considered as the unstructured datasets is a deep learning application. Processes in deep learning applications have a strong coupling in a way of abstracting dataset from the acquisition to analysis phases, it has less flexible when the target analysis model or applications are modified in functional scalability. Therefore, an abstraction model that separates the phases and process the unstructured dataset for analysis is proposed. The proposed abstraction utilizes a description name Analysis Model Description Language(AMDL) to deploy the analysis phases by each fat client is a specifically designed instance for resource-oriented tasks in edge computing environments how to handle different analysis applications and its factors using the AMDL and Fat client profiles. The experiment shows functional scalability through examples of AMDL and Fat client profiles targeting a vehicle image recognition model for vehicle access control notification service, and conducts process-by-process monitoring for collection-preprocessing-analysis of unstructured data.

Strawberry Pests and Diseases Detection Technique Optimized for Symptoms Using Deep Learning Algorithm (딥러닝을 이용한 병징에 최적화된 딸기 병충해 검출 기법)

  • Choi, Young-Woo;Kim, Na-eun;Paudel, Bhola;Kim, Hyeon-tae
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.255-260
    • /
    • 2022
  • This study aimed to develop a service model that uses a deep learning algorithm for detecting diseases and pests in strawberries through image data. In addition, the pest detection performance of deep learning models was further improved by proposing segmented image data sets specialized in disease and pest symptoms. The CNN-based YOLO deep learning model was selected to enhance the existing R-CNN-based model's slow learning speed and inference speed. A general image data set and a proposed segmented image dataset was prepared to train the pest and disease detection model. When the deep learning model was trained with the general training data set, the pest detection rate was 81.35%, and the pest detection reliability was 73.35%. On the other hand, when the deep learning model was trained with the segmented image dataset, the pest detection rate increased to 91.93%, and detection reliability was increased to 83.41%. This study concludes with the possibility of improving the performance of the deep learning model by using a segmented image dataset instead of a general image dataset.

CNN based Actuator Fault Cause Classification System Using Noise (CNN 기반의 소음을 이용한 원동 구동장치 고장 원인 분류 시스템)

  • Lee, Se-Hoon;Kim, Ji-Seong;Shin, Bo-Bae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.01a
    • /
    • pp.7-8
    • /
    • 2018
  • 본 논문에서는 CNN 기반의 소음을 이용한 원동 구동장치 진단시스템(PHM)을 제안한다. 이 시스템은 구동장치로부터 발생된 소리로부터 특징데이터를 추출하여 이를 학습한 후 실시간으로 구동장치의 상태를 진단하는 것을 목적으로 하며, 딥러닝 기술을 이용하여 특정 장치에 종속되지 않고 학습할 데이터에 따라 적용 대상이 쉽게 가변 할 수 있도록 설계하였다. 본 논문에서는 실제 적용될 현장에서 발생할 수 있는 예측외의 소음환경에 유연하게 대처하기 위해 딥러닝 모델 중 CNN을 적용한 시스템을 설계하였으며, 제안된 시스템과 이전 연구에서 제안된 DNN 기반의 기계진단시스템을 학습데이터의 환경과 다른 처리배제가 필요한 소음환경에서 비교 실험하여 제안된 시스템이 새로운 환경적응 성능향상에 대하여 우수한 결과를 얻었음을 확인하였다.

  • PDF

Autonomous Driving System in Library using 6 Dof Manipulator based on Deeplearning (딥러닝, 로봇팔을 이용한 도서관 자율주행 시스템)

  • Chang-Min Lee;Yu-Seok Shin;Do-Hyeon Kim;Hyeon-Min Jo
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.809-810
    • /
    • 2023
  • 도서관 자동화 시스템 개발로 이용자가 책을 직접 찾지 않고, 대출하고자 하는 책을 PC에 입력하면 자율주행으로 책이 있는 서가로 이동, 딥러닝 기반의 로봇팔로 책을 잡고 기존 위치로 복귀하여 자동으로 대출과 운반이 가능한 로봇의 시스템을 제안한다.

Deep Learning Music genre automatic classification voting system using Softmax (소프트맥스를 이용한 딥러닝 음악장르 자동구분 투표 시스템)

  • Bae, June;Kim, Jangyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.1
    • /
    • pp.27-32
    • /
    • 2019
  • Research that implements the classification process through Deep Learning algorithm, one of the outstanding human abilities, includes a unimodal model, a multi-modal model, and a multi-modal method using music videos. In this study, the results were better by suggesting a system to analyze each song's spectrum into short samples and vote for the results. Among Deep Learning algorithms, CNN showed superior performance in the category of music genre compared to RNN, and improved performance when CNN and RNN were applied together. The system of voting for each CNN result by Deep Learning a short sample of music showed better results than the previous model and the model with Softmax layer added to the model performed best. The need for the explosive growth of digital media and the automatic classification of music genres in numerous streaming services is increasing. Future research will need to reduce the proportion of undifferentiated songs and develop algorithms for the last category classification of undivided songs.

Performance Analysis of Wireless Communication Systems Using Deep Learning Based Transmit Power Control in Nakagami Fading Channels (나카가미 페이딩 채널에서 딥러닝 기반 송신 전력 제어 기법을 이용하는 무선통신 시스템에 대한 성능 분석)

  • Kim, Donghyeon;Kim, Dongyon;Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.6
    • /
    • pp.744-750
    • /
    • 2020
  • In this paper, we propose a deep learning based transmit power control (TPC) scheme to improve the spectral and energy efficiency of wireless communication systems. In the wireless communication system, the positions of multiple transceivers follow a uniform distribution, and the performances of spectral and energy efficiency for the proposed TPC scheme are analyzed assuming the Nakagami fading channels. The proposed TPC scheme uses batch normalization to improve spectral and energy efficiency in deep learning based training. Through simulation, we compare the results of the spectral and energy efficiency of the proposed TPC scheme and the conventional one for various area sizes that limit the position range of the transceivers and Nakagami fading factors. Comparing the performance results, we verify that the proposed scheme provides better performance than the conventional one.

Topic conversation performance improvement technology through game domain entity name recognition and deep learning intention classification (게임 도메인 개체명인식과 딥러닝 의도분류를 통한 주제대화 성능향상 기술)

  • Yun, Jae-Min;Jee, Min-Seong;Shin, Dong-Chun;Ko, Yeon-Jeong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.241-242
    • /
    • 2021
  • 대화시스템에서 게임설명요청과 같은 주제대화의 경우, 입력문장의 의도를 정확하게 분류하는 것이 대화시스템 성능과 직결되므로 매우 중요하다. 본 논문에서는 개체명 인식 방법과 머신러닝 방법을 결합한 하이브리드 방법을 제안하여, 머신러닝 방법을 단독으로 사용하는 방법보다 주제대화의 의도 분류 성능을 향상시켰다.

  • PDF

Damage Localization of Bridges with Variational Autoencoder (Variational Autoencoder를 이용한 교량 손상 위치 추정방법)

  • Lee, Kanghyeok;Chung, Minwoong;Jeon, Chanwoong;Shin, Do Hyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.233-238
    • /
    • 2020
  • Most deep learning (DL) approaches for bridge damage localization based on a structural health monitoring system commonly use supervised learning-based DL models. The supervised learning-based DL model requires the response data obtained from sensors on the bridge and also the label which indicates the damaged state of the bridge. However, it is impractical to accurately obtain the label data in fields, thus, the supervised learning-based DL model has a limitation in that it is not easily applicable in practice. On the other hand, an unsupervised learning-based DL model has the merit of being able to train without label data. Considering this advantage, this study aims to propose and theoretically validate a damage localization approach for bridges using a variational autoencoder, a representative unsupervised learning-based DL network: as a result, this study indicated the feasibility of VAE for damage localization.