• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,296, Processing Time 0.025 seconds

A motion classification and retrieval system in baseball sports video using Convolutional Neural Network model

  • Park, Jun-Young;Kim, Jae-Seung;Woo, Yong-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.8
    • /
    • pp.31-37
    • /
    • 2021
  • In this paper, we propose a method to effectively search by automatically classifying scenes in which specific images such as pitching or swing appear in baseball game images using a CNN(Convolution Neural Network) model. In addition, we propose a video scene search system that links the classification results of specific motions and game records. In order to test the efficiency of the proposed system, an experiment was conducted to classify the Korean professional baseball game videos from 2018 to 2019 by specific scenes. In an experiment to classify pitching scenes in baseball game images, the accuracy was about 90% for each game. And in the video scene search experiment linking the game record by extracting the scoreboard included in the game video, the accuracy was about 80% for each game. It is expected that the results of this study can be used effectively to establish strategies for improving performance by systematically analyzing past game images in Korean professional baseball games.

Abnormality Detection Method of Factory Roof Fixation Bolt by Using AI

  • Kim, Su-Min;Sohn, Jung-Mo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.33-40
    • /
    • 2022
  • In this paper, we propose a system that analyzes drone photographic images of panel-type factory roofs and conducts abnormal detection of bolts. Currently, inspectors directly climb onto the roof to carry out the inspection. However, safety accidents caused by working conditions at high places are continuously occurring, and new alternatives are needed. In response, the results of drone photography, which has recently emerged as an alternative to the dangerous environment inspection plan, will be easily inspected by finding the location of abnormal bolts using deep learning. The system proposed in this study proceeds with scanning the captured drone image using a sample image for the situation where the bolt cap is released. Furthermore, the scanned position is discriminated by using AI, and the presence/absence of the bolt abnormality is accurately discriminated. The AI used in this study showed 99% accuracy in test results based on VGGNet.

Untact-based elevator operating system design using deep learning of private buildings (프라이빗 건물의 딥러닝을 활용한 언택트 기반 엘리베이터 운영시스템 설계)

  • Lee, Min-hye;Kang, Sun-kyoung;Shin, Seong-yoon;Mun, Hyung-jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.161-163
    • /
    • 2021
  • In an apartment or private building, it is difficult for the user to operate the elevator button in a similar situation with luggage in both hands. In an environment where human contact must be minimized due to a highly infectious virus such as COVID-19, it is inevitable to operate an elevator based on untact. This paper proposes an operating system capable of operating the elevator by using the user's voice and image processing through the user's face without pressing the elevator button. The elevator can be operated to a designated floor without pressing a button by detecting the face of a person entering the elevator by detecting the person's face from the camera installed in the elevator, matching the information registered in advance. When it is difficult to recognize a person's face, it is intended to enhance the convenience of elevator use in an untouched environment by controlling the floor of the elevator using the user's voice through a microphone and automatically recording access information.

  • PDF

Proposal of a method of using HSV histogram data learning to provide additional information in object recognition (객체 인식의 추가정보제공을 위한 HSV 히스토그램 데이터 학습 활용 방법 제안)

  • Choi, Donggyu;Wang, Tae-su;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.6-8
    • /
    • 2022
  • Many systems that use images through object recognition using deep learning have provided various solutions beyond the existing methods. Many studies have proven its usability, and the actual control system shows the possibility of using it to make people's work more convenient. Many studies have proven its usability, and actual control systems make human tasks more convenient and show possible. However, with hardware-intensive performance, the development of models is facing some limitations, and the ease with the use and additional utilization of many unupdated models is falling. In this paper, we propose how to increase utilization and accuracy by providing additional information on the emotional regions of colors and objects by utilizing learning and weights from HSV color histograms of local image data recognized after conventional stereotyped object recognition results.

  • PDF

Comparing State Representation Techniques for Reinforcement Learning in Autonomous Driving (자율주행 차량 시뮬레이션에서의 강화학습을 위한 상태표현 성능 비교)

  • Jihwan Ahn;Taesoo Kwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.109-123
    • /
    • 2024
  • Research into vision-based end-to-end autonomous driving systems utilizing deep learning and reinforcement learning has been steadily increasing. These systems typically encode continuous and high-dimensional vehicle states, such as location, velocity, orientation, and sensor data, into latent features, which are then decoded into a vehicular control policy. The complexity of urban driving environments necessitates the use of state representation learning through networks like Variational Autoencoders (VAEs) or Convolutional Neural Networks (CNNs). This paper analyzes the impact of different image state encoding methods on reinforcement learning performance in autonomous driving. Experiments were conducted in the CARLA simulator using RGB images and semantically segmented images captured by the vehicle's front camera. These images were encoded using VAE and Vision Transformer (ViT) networks. The study examines how these networks influence the agents' learning outcomes and experimentally demonstrates the role of each state representation technique in enhancing the learning efficiency and decision- making capabilities of autonomous driving systems.

Prediction of the Following BCI Performance by Means of Spectral EEG Characteristics in the Prior Resting State (뇌신호 주파수 특성을 이용한 CNN 기반 BCI 성능 예측)

  • Kang, Jae-Hwan;Kim, Sung-Hee;Youn, Joosang;Kim, Junsuk
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.11
    • /
    • pp.265-272
    • /
    • 2020
  • In the research of brain computer interface (BCI) technology, one of the big problems encountered is how to deal with some people as called the BCI-illiteracy group who could not control the BCI system. To approach this problem efficiently, we investigated a kind of spectral EEG characteristics in the prior resting state in association with BCI performance in the following BCI tasks. First, spectral powers of EEG signals in the resting state with both eyes-open and eyes-closed conditions were respectively extracted. Second, a convolution neural network (CNN) based binary classifier discriminated the binary motor imagery intention in the BCI task. Both the linear correlation and binary prediction methods confirmed that the spectral EEG characteristics in the prior resting state were highly related to the BCI performance in the following BCI task. Linear regression analysis demonstrated that the relative ratio of the 13 Hz below and above the spectral power in the resting state with only eyes-open, not eyes-closed condition, were significantly correlated with the quantified metrics of the BCI performance (r=0.544). A binary classifier based on the linear regression with L1 regularization method was able to discriminate the high-performance group and low-performance group in the following BCI task by using the spectral-based EEG features in the precedent resting state (AUC=0.817). These results strongly support that the spectral EEG characteristics in the frontal regions during the resting state with eyes-open condition should be used as a good predictor of the following BCI task performance.

Timely Sensor Fault Detection Scheme based on Deep Learning (딥 러닝 기반 실시간 센서 고장 검출 기법)

  • Yang, Jae-Wan;Lee, Young-Doo;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.163-169
    • /
    • 2020
  • Recently, research on automation and unmanned operation of machines in the industrial field has been conducted with the advent of AI, Big data, and the IoT, which are the core technologies of the Fourth Industrial Revolution. The machines for these automation processes are controlled based on the data collected from the sensors attached to them, and further, the processes are managed. Conventionally, the abnormalities of sensors are periodically checked and managed. However, due to various environmental factors and situations in the industrial field, there are cases where the inspection due to the failure is not missed or failures are not detected to prevent damage due to sensor failure. In addition, even if a failure occurs, it is not immediately detected, which worsens the process loss. Therefore, in order to prevent damage caused by such a sudden sensor failure, it is necessary to identify the failure of the sensor in an embedded system in real-time and to diagnose the failure and determine the type for a quick response. In this paper, a deep neural network-based fault diagnosis system is designed and implemented using Raspberry Pi to classify typical sensor fault types such as erratic fault, hard-over fault, spike fault, and stuck fault. In order to diagnose sensor failure, the network is constructed using Google's proposed Inverted residual block structure of MobilieNetV2. The proposed scheme reduces memory usage and improves the performance of the conventional CNN technique to classify sensor faults.

Estimation of Manhattan Coordinate System using Convolutional Neural Network (합성곱 신경망 기반 맨하탄 좌표계 추정)

  • Lee, Jinwoo;Lee, Hyunjoon;Kim, Junho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.3
    • /
    • pp.31-38
    • /
    • 2017
  • In this paper, we propose a system which estimates Manhattan coordinate systems for urban scene images using a convolutional neural network (CNN). Estimating the Manhattan coordinate system from an image under the Manhattan world assumption is the basis for solving computer graphics and vision problems such as image adjustment and 3D scene reconstruction. We construct a CNN that estimates Manhattan coordinate systems based on GoogLeNet [1]. To train the CNN, we collect about 155,000 images under the Manhattan world assumption by using the Google Street View APIs and calculate Manhattan coordinate systems using existing calibration methods to generate dataset. In contrast to PoseNet [2] that trains per-scene CNNs, our method learns from images under the Manhattan world assumption and thus estimates Manhattan coordinate systems for new images that have not been learned. Experimental results show that our method estimates Manhattan coordinate systems with the median error of $3.157^{\circ}$ for the Google Street View images of non-trained scenes, as test set. In addition, compared to an existing calibration method [3], the proposed method shows lower intermediate errors for the test set.

A LSTM Based Method for Photovoltaic Power Prediction in Peak Times Without Future Meteorological Information (미래 기상정보를 사용하지 않는 LSTM 기반의 피크시간 태양광 발전량 예측 기법)

  • Lee, Donghun;Kim, Kwanho
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.4
    • /
    • pp.119-133
    • /
    • 2019
  • Recently, the importance prediction of photovoltaic power (PV) is considered as an essential function for scheduling adjustments, deciding on storage size, and overall planning for stable operation of PV facility systems. In particular, since most of PV power is generated in peak time, PV power prediction in a peak time is required for the PV system operators that enable to maximize revenue and sustainable electricity quantity. Moreover, Prediction of the PV power output in peak time without meteorological information such as solar radiation, cloudiness, the temperature is considered a challenging problem because it has limitations that the PV power was predicted by using predicted uncertain meteorological information in a wide range of areas in previous studies. Therefore, this paper proposes the LSTM (Long-Short Term Memory) based the PV power prediction model only using the meteorological, seasonal, and the before the obtained PV power before peak time. In this paper, the experiment results based on the proposed model using the real-world data shows the superior performance, which showed a positive impact on improving the PV power in a peak time forecast performance targeted in this study.

Auto-Tracking Camera Gimbal for Power Line Inspection Drone and its Field Tests on 154 kV Transmission Lines (송전선로 자동추적 카메라 짐벌 및 154 kV 송전선로 현장시험)

  • Kim, Seok-Tae;Park, Joon-Young;Lee, Jae-Kyung;Ham, Ji-Wan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.149-156
    • /
    • 2019
  • In the field of maintenance of power transmission lines, drones have been used for their patrol and inspection by KEPCO since 2017. This drone technology was originally developed by KEPCO Research Institute, and now workers from four regional offices of KEPCO have directly applied this technology to the drone patrol and inspection tasks. In the drone inspection system, a drone with an optical zooming camera and a thermal camera can fly automatically along the transmission lines by the ground control system developed by KEPCO Research Institute, but its camera gimbal has been remotely controlled by a field worker. Especially the drone patrol and inspection has been mainly applied for the transmission lines in the inaccessible areas such as regions with river-crossings, sea-crossings and mountains. There are often communication disruptions between the drone and its remote controller in such extreme fields of mountain areas with many barriers. This problem may cause the camera gimbal be out of control, even though the inspection drone flies along the flight path well. In addition, interference with the reception of real-time transmitted videos makes the field worker unable to operate it. To solve these problems, we have developed the auto-tracking camera gimbal system with deep learning method. The camera gimbal can track the transmission line automatically, even when the transmitted video on a remote controller is intermittently unavailable. To show the effectiveness of our camera gimbal system, its field test results will be presented in this paper.