Proposal of a method of using HSV histogram data learning to provide additional information in object recognition

객체 인식의 추가정보제공을 위한 HSV 히스토그램 데이터 학습 활용 방법 제안

  • Published : 2022.10.03

Abstract

Many systems that use images through object recognition using deep learning have provided various solutions beyond the existing methods. Many studies have proven its usability, and the actual control system shows the possibility of using it to make people's work more convenient. Many studies have proven its usability, and actual control systems make human tasks more convenient and show possible. However, with hardware-intensive performance, the development of models is facing some limitations, and the ease with the use and additional utilization of many unupdated models is falling. In this paper, we propose how to increase utilization and accuracy by providing additional information on the emotional regions of colors and objects by utilizing learning and weights from HSV color histograms of local image data recognized after conventional stereotyped object recognition results.

딥러닝을 활용한 객체 인식으로 이미지를 사용하는 많은 시스템에서 기존에 제공하던 방식을 넘어서 다양한 솔루션이 제공되고 있다. 많은 연구를 통하여 그 활용성을 입증하고 있으며, 실제 관제 시스템에서는 이를 사용하여 사람의 업무를 더욱 편리하게 하는 등 가능성을 보여주고 있다. 하지만, 하드웨어에 집중된 성능에 따라 모델의 개발도 일부 한계를 맞이하고 있으며 새롭게 업데이트되지 못한 많은 모델의 사용과 추가적 활용에 따른 용이성이 떨어지고 있다. 본 논문에서는 기존의 정형화된 객체 인식의 결괏값 이후에 인식된 국소 이미지 데이터의 HSV 색상 히스토그램을 통한 학습과 가중치를 활용하여 색상의 감성적 영역 및 객체의 추가적 정보를 제공하여 활용도와 정확성을 높일 방법을 제안한다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 및 정보통신기획평가원의 지역지능화혁신인재양성(Grand ICT연구센터) 사업의 연구결과로 수행되었음. (IITP-2022-2020-0-01791). 또한, 본 논문은 부산광역시 및 (재)부산인재평생교육진흥원의 BB21플러스 사업으로 지원된 연구임.