• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,319, Processing Time 0.03 seconds

Research on Human Posture Recognition System Based on The Object Detection Dataset (객체 감지 데이터 셋 기반 인체 자세 인식시스템 연구)

  • Liu, Yan;Li, Lai-Cun;Lu, Jing-Xuan;Xu, Meng;Jeong, Yang-Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.111-118
    • /
    • 2022
  • In computer vision research, the two-dimensional human pose is a very extensive research direction, especially in pose tracking and behavior recognition, which has very important research significance. The acquisition of human pose targets, which is essentially the study of how to accurately identify human targets from pictures, is of great research significance and has been a hot research topic of great interest in recent years. Human pose recognition is used in artificial intelligence on the one hand and in daily life on the other. The excellent effect of pose recognition is mainly determined by the success rate and the accuracy of the recognition process, so it reflects the importance of human pose recognition in terms of recognition rate. In this human body gesture recognition, the human body is divided into 17 key points for labeling. Not only that but also the key points are segmented to ensure the accuracy of the labeling information. In the recognition design, use the comprehensive data set MS COCO for deep learning to design a neural network model to train a large number of samples, from simple step-by-step to efficient training, so that a good accuracy rate can be obtained.

Concurrent Detection for Vehicles and Lanes Using Light-Weight Model of Multi-Task CNN (멀티 테스크 CNN의 경량화 모델을 이용한 차량 및 차선의 동시 검출)

  • Shin, Hyeon-Sik;Kim, Hyung-Won;Hong, Sang-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.367-373
    • /
    • 2022
  • As deep learning-based autonomous driving technology develops, artificial intelligence models for various purposes have been studied. Based on these studies, several models were used simultaneously to develop autonomous driving systems. It can occur by increasing hardware resource consumption. We propose a multi-tasks model using a shared backbone to solve this problem. This can solve the increase in the number of backbones for using AI models. As a result, in the proposed lightweight model, the model parameters could be reduced by more than 50% compared to the existing model, and the speed could be improved. In addition, each lane can be classified through lane detection using the instance segmentation method. However, further research is needed on the decrease in accuracy compared to the existing model.

A Study on Automatic Classification of Class Diagram Images (클래스 다이어그램 이미지의 자동 분류에 관한 연구)

  • Kim, Dong Kwan
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.1-9
    • /
    • 2022
  • UML class diagrams are used to visualize the static aspects of a software system and are involved from analysis and design to documentation and testing. Software modeling using class diagrams is essential for software development, but it may be not an easy activity for inexperienced modelers. The modeling productivity could be improved with a dataset of class diagrams which are classified by domain categories. To this end, this paper provides a classification method for a dataset of class diagram images. First, real class diagrams are selected from collected images. Then, class names are extracted from the real class diagram images and the class diagram images are classified according to domain categories. The proposed classification model has achieved 100.00%, 95.59%, 97.74%, and 97.77% in precision, recall, F1-score, and accuracy, respectively. The accuracy scores for the domain categorization are distributed between 81.1% and 95.2%. Although the number of class diagram images in the experiment is not large enough, the experimental results indicate that it is worth considering the proposed approach to class diagram image classification.

Design of visitor counting system using edge computing method

  • Kim, Jung-Jun;Kim, Min-Gyu;Kim, Ju-Hyun;Lee, Man-Gi;Kim, Da-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.75-82
    • /
    • 2022
  • There are various exhibition halls, shopping malls, theme parks around us and analysis of interest in exhibits or contents is mainly done through questionnaires. These questionnaires are mainly depend on the subjective memory of the person being investigated, resulting in incorrect statistical results. Therefore, it is possible to identify an exhibition space with low interest by tracking the movement and counting the number of visitors. Based on this, it can be used as quantitative data for exhibits that need replacement. In this paper, we use deep learning-based artificial intelligence algorithms to recognize visitors, assign IDs to the recognized visitors, and continuously track them to identify the movement path. When visitors pass the counting line, the system is designed to count the number and transmit data to the server for integrated management.

Strawberry disease diagnosis service using EfficientNet (EfficientNet 활용한 딸기 병해 진단 서비스)

  • Lee, Chang Jun;Kim, Jin Seong;Park, Jun;Kim, Jun Yeong;Park, Sung Wook;Jung, Se Hoon;Sim, Chun Bo
    • Smart Media Journal
    • /
    • v.11 no.5
    • /
    • pp.26-37
    • /
    • 2022
  • In this paper, images are automatically acquired to control the initial disease of strawberries among facility cultivation crops, and disease analysis is performed using the EfficientNet model to inform farmers of disease status, and disease diagnosis service is proposed by experts. It is possible to obtain an image of the strawberry growth stage and quickly receive expert feedback after transmitting the disease diagnosis analysis results to farmers applications using the learned EfficientNet model. As a data set, farmers who are actually operating facility cultivation were recruited and images were acquired using the system, and the problem of lack of data was solved by using the draft image taken with a cell phone. Experimental results show that the accuracy of EfficientNet B0 to B7 is similar, so we adopt B0 with the fastest inference speed. For performance improvement, Fine-tuning was performed using a pre-trained model with ImageNet, and rapid performance improvement was confirmed from 100 Epoch. The proposed service is expected to increase production by quickly detecting initial diseases.

Development and Usability Evaluation of Hand Rehabilitation Training System Using Multi-Channel EMG-Based Deep Learning Hand Posture Recognition (다채널 근전도 기반 딥러닝 동작 인식을 활용한 손 재활 훈련시스템 개발 및 사용성 평가)

  • Ahn, Sung Moo;Lee, Gun Hee;Kim, Se Jin;Bae, So Jeong;Lee, Hyun Ju;Oh, Do Chang;Tae, Ki Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.361-368
    • /
    • 2022
  • The purpose of this study was to develop a hand rehabilitation training system for hemiplegic patients. We also tried to find out five hand postures (WF: Wrist Flexion, WE: Wrist Extension, BG: Ball Grip, HG: Hook Grip, RE: Rest) in real-time using multi-channel EMG-based deep learning. We performed a pre-processing method that converts to Spider Chart image data for the classification of hand movement from five test subjects (total 1,500 data sets) using Convolution Neural Networks (CNN) deep learning with an 8-channel armband. As a result of this study, the recognition accuracy was 92% for WF, 94% for WE, 76% for BG, 82% for HG, and 88% for RE. Also, ten physical therapists participated for the usability evaluation. The questionnaire consisted of 7 items of acceptance, interest, and satisfaction, and the mean and standard deviation were calculated by dividing each into a 5-point scale. As a result, high scores were obtained in immersion and interest in game (4.6±0.43), convenience of the device (4.9±0.30), and satisfaction after treatment (4.1±0.48). On the other hand, Conformity of intention for treatment (3.90±0.49) was relatively low. This is thought to be because the game play may be difficult depending on the degree of spasticity of the hemiplegic patient, and compensation may occur in patient with weakened target muscles. Therefore, it is necessary to develop a rehabilitation program suitable for the degree of disability of the patient.

Development of Long-perimeter Intrusion Detection System Aided by deep Learning-based Distributed Fiber-optic Acoustic·vibration Sensing Technology (딥러닝 기반 광섬유 분포 음향·진동 계측기술을 활용한 장거리 외곽 침입감지 시스템 개발)

  • Kim, Huioon;Lee, Joo-young;Jung, Hyoyoung;Kim, Young Ho;Kwon, Jun Hyuk;Ki, Song Do;Kim, Myoung Jin
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.24-30
    • /
    • 2022
  • Distributed fiber-optic acoustic·vibration sensing technology is becoming increasingly popular in many industrial and academic areas such as in securing large edifices, exploring underground seismic activity, monitoring oil well/reservoir, etc. Long-range perimeter intrusion detection exemplifies an application that not only detects intrusion, but also pinpoints where it happens and recognizes kinds of threats made along the perimeter where a single fiber cable was installed. In this study, we developed a distributed fiber-optic sensing device that measures a distributed acoustic·vibration signature (pattern) for intrusion detection. In addition, we demontrate the proposed deep learning algorithm and how it classifies various intrusion events. We evaluated the sensing device and deep learning algorithm in a practical testbed setup. The evaluation results confirm that the developed system is a promising intrusion detection system for long-distance and seamless recognition requirements.

Deep Learning-based Real-time Heart Rate Measurement System Using Mobile Facial Videos (딥러닝 기반의 모바일 얼굴 영상을 이용한 실시간 심박수 측정 시스템)

  • Ji, Yerim;Lim, Seoyeon;Park, Soyeon;Kim, Sangha;Dong, Suh-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.11
    • /
    • pp.1481-1491
    • /
    • 2021
  • Since most biosignals rely on contact-based measurement, there is still a problem in that it is hard to provide convenience to users by applying them to daily life. In this paper, we present a mobile application for estimating heart rate based on a deep learning model. The proposed application measures heart rate by capturing real-time face images in a non-contact manner. We trained a three-dimensional convolutional neural network to predict photoplethysmography (PPG) from face images. The face images used for training were taken in various movements and situations. To evaluate the performance of the proposed system, we used a pulse oximeter to measure a ground truth PPG. As a result, the deviation of the calculated root means square error between the heart rate from remote PPG measured by the proposed system and the heart rate from the ground truth was about 1.14, showing no significant difference. Our findings suggest that heart rate measurement by mobile applications is accurate enough to help manage health during daily life.

A Named Entity Recognition Model in Criminal Investigation Domain using Pretrained Language Model (사전학습 언어모델을 활용한 범죄수사 도메인 개체명 인식)

  • Kim, Hee-Dou;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.2
    • /
    • pp.13-20
    • /
    • 2022
  • This study is to develop a named entity recognition model specialized in criminal investigation domains using deep learning techniques. Through this study, we propose a system that can contribute to analysis of crime for prevention and investigation using data analysis techniques in the future by automatically extracting and categorizing crime-related information from text-based data such as criminal judgments and investigation documents. For this study, the criminal investigation domain text was collected and the required entity name was newly defined from the perspective of criminal analysis. In addition, the proposed model applying KoELECTRA, a pre-trained language model that has recently shown high performance in natural language processing, shows performance of micro average(referred to as micro avg) F1-score 98% and macro average(referred to as macro avg) F1-score 95% in 9 main categories of crime domain NER experiment data, and micro avg F1-score 98% and macro avg F1-score 62% in 56 sub categories. The proposed model is analyzed from the perspective of future improvement and utilization.

CNN-Based Malware Detection Using Opcode Frequency-Based Image (Opcode 빈도수 기반 악성코드 이미지를 활용한 CNN 기반 악성코드 탐지 기법)

  • Ko, Seok Min;Yang, JaeHyeok;Choi, WonJun;Kim, TaeGuen
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.933-943
    • /
    • 2022
  • As the Internet develops and the utilization rate of computers increases, the threats posed by malware keep increasing. This leads to the demand for a system to automatically analyzes a large amount of malware. In this paper, an automatic malware analysis technique using a deep learning algorithm is introduced. Our proposed method uses CNN (Convolutional Neural Network) to analyze the malicious features represented as images. To reflect semantic information of malware for detection, our method uses the opcode frequency data of binary for image generation, rather than using bytes of binary. As a result of the experiments using the datasets consisting of 20,000 samples, it was found that the proposed method can detect malicious codes with 91% accuracy.