• Title/Summary/Keyword: 딥러닝 도구

Search Result 62, Processing Time 0.033 seconds

ManiFL : A Better Natural-Language-Processing Tool Based On Shallow-Learning (ManiFL : 얕은 학습 기반의 더 나은 자연어처리 도구)

  • Shin, Joon-Choul;Kim, Wan-Su;Lee, Ju-Sang;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.311-315
    • /
    • 2021
  • 근래의 자연어처리 분야에서는 잘 만들어진 도구(Library)를 이용하여 생산성 높은 개발과 연구가 활발하게 이뤄지고 있다. 이 중에 대다수는 깊은 학습(Deep-Learning, 딥러닝) 기반인데, 이런 모델들은 학습 속도가 느리고, 비용이 비싸고, 사용(Run-Time) 속도도 느리다. 이뿐만 아니라 라벨(Label)의 가짓수가 굉장히 많거나, 라벨의 구성이 단어마다 달라질 수 있는 의미분별(동형이의어, 다의어 번호 태깅) 분야에서 딥러닝은 굉장히 비효율적인 문제가 있다. 이런 문제들은 오히려 기존의 얕은 학습(Shallow-Learning)기반 모델에서는 없던 것들이지만, 최근의 연구경향에서 딥러닝 비중이 급격히 증가하면서, 멀티스레딩 같은 고급 기능들을 지원하는 얕은 학습 기반 언어모델이 새로이 개발되지 않고 있었다. 본 논문에서는 학습과 태깅 모두에서 멀티스레딩을 지원하고, 딥러닝에서 연구된 드롭아웃 기법이 구현된 자연어처리 도구인 혼합 자질 가변 표지기 ManiFL(Manifold Feature Labelling : ManiFL)을 소개한다. 본 논문은 실험을 통해서 ManiFL로 다의어태깅이 가능함을 보여주고, 딥러닝과 CRFsuite에서 높은 성능을 보여주는 개체명 인식에서도 비교할만한 성능이 나옴을 보였다.

  • PDF

High-performance and Highly Scalable Big Data Analysis Platform (고성능, 고확장성 빅데이터 분석 플랫폼)

  • Park, Kyongseok;Yu, Chan Hee;Kim, Yuseon;Um, Jung-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.535-536
    • /
    • 2021
  • 빅데이터를 활용한 기계학습 모델을 개발하기 위해서는 빅데이터 처리를 위한 플랫폼과 딥러닝 프레임 워크 등 고급 분석을 수행할 수 있는 도구의 활용이 동시에 요구된다. 그러나 빅데이터 플랫폼과 딥러닝 프레임워크를 자유롭게 활용하기 위해서는 상당한 수준의 기술적 지식과 경험이 필요하다. 또한 빅데이터를 이용한 딥러닝 모델을 개발할 경우 분산처리와 병렬처리에 대한 지식과 추가적인 작업이 요구된다. 본 연구에서는 빅데이터를 활용한 기계학습 모형을 자유롭게 개발 및 공유하고 분산 딥러닝을 위한 시스템적 지원을 통해 분야별로 딥러닝 모형을 개발하는 응용 연구자들이 활용할 수 있는 플랫폼을 제시하였다. 본 연구를 통해 다양한 분야의 연구자들이 자신의 데이터를 이용하여 모형을 개발할 경우 분산처리와 병렬처리를 위한 기술적 제약을 극복하고 보다 빠르고 효율적인 방법으로 모형을 개발하고 현업에 활용할 수 있을 것으로 기대한다.

Rule Visualization Tool for Understanding Knowledge of Trained Artificial Neural Network (인공 신경망이 학습한 지식을 이해하기 위한 규칙 시각화 도구)

  • Lee, Eun-Hun;Kim, Sun-bin;Lee, Hurn-joo;Kim, Hyeoncheol
    • Proceedings of The KACE
    • /
    • 2017.08a
    • /
    • pp.213-216
    • /
    • 2017
  • 오늘날 딥러닝은 교육을 포함한 다양한 분야에서 세상의 패러다임을 바꿀만큼 발전하고 있다. 그러나 딥러닝 모델이 어떤 지식을 습득하였는지 파악하기 어려워 딥러닝 시스템을 무조건적으로 신뢰할 수 없다는 것이 문제로 남아있다. 이 문제를 해결하기 위해 기존에 딥러닝이 학습한 결과를 If-then과 같은 형식의 규칙으로 추출하는 방법이 제안되었지만, 이러한 규칙은 사람이 이해하기에는 직관적이지 못하다는 단점을 가지고 있다. 본 논문에서는 이러한 문제를 해결하고자 딥러닝 모델이 습득한 지식을 규칙 형태로 추출하고 이를 시각화하여, 사람이 직관적으로 이해할 수 있는 형태로 표현하는 방법을 제시한다.

  • PDF

Development of integrated data augmentation automation tools for deep learning (딥러닝 학습용 집적화된 데이터 증강 자동화 도구 개발)

  • Jang, Chan-Ho;Lee, Seo-Young;Park, Goo-Man
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.283-286
    • /
    • 2021
  • 4차 산업혁명을 맞이해 최근 산업 및 기술 영역에서는 인공지능을 이용한 생산력 향상, 자동화 등 딥러닝의 보편화가 빠르게 진행되고 있다. 또한, 딥러닝의 성능을 도출하기 위해서는 수많은 양의 학습용 데이터가 필요하며 그 데이터의 양은 딥러닝 모델의 성능과 정비례한다. 이에 본 작품은 최신형 영상처리 Library인 Albumentations를 이용하여 영상처리 알고리즘을 이용하여 이미지를 증강하고, 이미지 데이터 크롤링 기능을 통해 Web에서 영상 데이터를 수집을 자동화하며, Label Pix를 연동하여 수집한 데이터를 라벨링 한다. 더 나아가 라벨링 된 데이터의 증강까지 포함하여 다양한 증강 자동화를 한 인터페이스에 집적시켜 딥러닝 모델을 생성할 때 데이터 수집과 전처리를 수월하게 한다. 또한, Neural Net 기반의 AdaIN Transfer를 이용하여 이미지를 개별적으로 학습하지 않고 Real time으로 이미지의 스타일을 옮겨올 수 있도록 하여 그림 데이터의 부족 현상을 해결한다.

  • PDF

Robust Detection Deep Learning Model in the Various Exterior Wall Cracks (다양한 외벽 균열에 강인한 딥러닝 검출 모델 개발)

  • Kim, Gyeong-Yeong;Lee, Ho-Ryeong;Kim, Dong-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.53-56
    • /
    • 2021
  • 국내 산업화가 들어선 후 산업화 당시 지었던 낙후된 건물의 증가에 따라 구조물의 손상 조사 및 검사 방법의 수요가 늘어나고 있다. 일반적으로 구조물의 손상은 전문 검사원이 현장에서 직접 측량도구와 시각적인 방식으로 검사한다. 그러나 전문 검사원들이 직접 조사하는 수고에 비해 균열을 검사하는 방식 자체가 단순하고, 일반 사람이 검사하기에는 객관성이 떨어지는 한계가 있어 균열을 자동적으로 검출함으로써 객관성과 편의성을 보장할 기술이 필요하다. 본 연구에서는 이미지 기반으로 다양한 환경에서의 외벽 균열을 검출할 수 있는 딥러닝 모델 개발을 소개한다. 균열 검출을 위해 다양한 외벽 균열 관련 데이터셋을 확보 및 구축하고 각 데이터셋의 검출 정보를 보완할 반자동(semi-auto) 라벨링 작업을 수행하였다. 두 번째로 기존 높은 검출 성능을 보였던 모델들을 선정 및 비교하여 YOLO v5 모델을 최종적으로 선정하였고, 도메인이 각각 다른 데이터셋에 대한 교차 학습을 통해 각 데이터셋의 mAP의 편차가 31%에서 11%로 좁히는 작업을 수행하였다. 이를 통해 실제 상황에서의 균열 영상에서 균열을 검출할 수 있는 측량 시스템을 개발함으로써 실질적인 검사의 도구로 활용될 수 있길 기대한다.

  • PDF

A Lightweight Deep Learning Model for Text Detection in Fashion Design Sketch Images for Digital Transformation

  • Ju-Seok Shin;Hyun-Woo Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.17-25
    • /
    • 2023
  • In this paper, we propose a lightweight deep learning architecture tailored for efficient text detection in fashion design sketch images. Given the increasing prominence of Digital Transformation in the fashion industry, there is a growing emphasis on harnessing digital tools for creating fashion design sketches. As digitization becomes more pervasive in the fashion design process, the initial stages of text detection and recognition take on pivotal roles. In this study, a lightweight network was designed by building upon existing text detection deep learning models, taking into consideration the unique characteristics of apparel design drawings. Additionally, a separately collected dataset of apparel design drawings was added to train the deep learning model. Experimental results underscore the superior performance of our proposed deep learning model, outperforming existing text detection models by approximately 20% when applied to fashion design sketch images. As a result, this paper is expected to contribute to the Digital Transformation in the field of clothing design by means of research on optimizing deep learning models and detecting specialized text information.

Dynamic Resource Adjustment Operator Based on Autoscaling for Improving Distributed Training Job Performance on Kubernetes (쿠버네티스에서 분산 학습 작업 성능 향상을 위한 오토스케일링 기반 동적 자원 조정 오퍼레이터)

  • Jeong, Jinwon;Yu, Heonchang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.7
    • /
    • pp.205-216
    • /
    • 2022
  • One of the many tools used for distributed deep learning training is Kubeflow, which runs on Kubernetes, a container orchestration tool. TensorFlow jobs can be managed using the existing operator provided by Kubeflow. However, when considering the distributed deep learning training jobs based on the parameter server architecture, the scheduling policy used by the existing operator does not consider the task affinity of the distributed training job and does not provide the ability to dynamically allocate or release resources. This can lead to long job completion time and low resource utilization rate. Therefore, in this paper we proposes a new operator that efficiently schedules distributed deep learning training jobs to minimize the job completion time and increase resource utilization rate. We implemented the new operator by modifying the existing operator and conducted experiments to evaluate its performance. The experiment results showed that our scheduling policy improved the average job completion time reduction rate of up to 84% and average CPU utilization increase rate of up to 92%.

Analyzing Characteristics of Code Refactoring for Python Deep-Learning Applications (파이썬 딥러닝 응용의 코드 리팩토링 특성 분석)

  • Kim, Dong Kwan
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.10
    • /
    • pp.754-764
    • /
    • 2022
  • Code refactoring refers to a maintenance task to change the code of a software system in order to consider new requirements, fix bugs, and restructure code. There have been various studies of refactoring subjects such as refactoring types, refactoring benefits, and CASE tools. However, Java applications rather than python ones have been benefited by refactoring-based coding practices. There are few cases of refactoring stuides on Python applications. This paper finds and analyzes single refactoring operations and composite refactoring operations for Python-based deep learning systems. In addition, we find that there is a statistically significant difference in the frequency of occurrence of single and complex refactoring operations in the two groups of deep learning applications and typical Python applications. Furthermore, we analyze keywords of commit messages to catch refactoring intentions of software developers.

Study of the Application of VQA Deep Learning Technology to the Operation and Management of Urban Parks - Analysis of SNS Images - (도시공원 운영 및 관리를 위한 VQA 딥러닝 기술 활용 연구 - SNS 이미지 분석을 중심으로 -)

  • Lee, Da-Yeon;Park, Seo-Eun;Lee, Jae Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.5
    • /
    • pp.44-56
    • /
    • 2023
  • This research explores the enhancement of park operation and management by analyzing the changing demands of park users. While traditional methods depended on surveys, there has been a recent shift towards utilizing social media data to understand park usage trends. Notably, most research has focused on text data from social media, overlooking the valuable insights from image data. Addressing this gap, our study introduces a novel method of assessing park usage using social media image data and then applies it to actual city park evaluations. A unique image analysis tool, built on Visual Question Answering (VQA) deep learning technology, was developed. This tool revealed specific city park details such as user demographics, behaviors, and locations. Our findings highlight three main points: (1) The VQA-based image analysis tool's validity was proven by matching its results with traditional text analysis outcomes. (2) VQA deep learning technology offers insights like gender, age, and usage time, which aren't accessible from text analysis alone. (3) Using VQA, we derived operational and management strategies for city parks. In conclusion, our VQA-based method offers significant methodological advancements for future park usage studies.

Analyzing the client's emotions and judging the effectiveness of counseling using a YOLO-based facial expression recognizer (YOLO 기반 표정 인식기를 활용한 내담자의 감정 분석 및 상담 효율성 판단)

  • Yoon, Kyung Seob;Kim, Minji
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.477-480
    • /
    • 2021
  • 본 논문에서는 딥러닝 기술을 활용한 객체 검출(object detection) 모델인 YOLO를 기반으로 하는 감정에 따른 표정 인식 시스템을 활용하여 상담 시 보조 도구로 사용하는 방법을 제공한다. 또한, 머신러닝 기술 기반의 툴킷인 dlib 라이브러리를 사용하여 마스크 착용자의 눈 형태 관측을 통한 표정 인식 및 감정 분석의 정확도 상승을 도모하였다. 이 기술은 코로나19의 장기화로 온라인 수업이나 화상회의를 지원하는 플랫폼들이 전성기를 누리고 있는 현시점에서 다양한 분야로 확장할 수 있을 것으로 기대한다.

  • PDF