• Title/Summary/Keyword: 딥러닝 기법

Search Result 1,104, Processing Time 0.033 seconds

Deep Learning-based Automated Detection of Radio-Opaque Markers in X-Ray Images (딥러닝 기반 방사선 비투과성 표지자 자동 검출 기법)

  • Song, Youngmin;Lee, Byoung-Dai
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.06a
    • /
    • pp.40-43
    • /
    • 2017
  • 본 논문은 딥러닝을 이용하여 대장통과시간(Colon Transit Time, CTT) 검사를 위한 단순복부 X-Ray 영상에서 방사선 비투과성 표지자(Radio-opaque Marker)를 자동으로 검출하는 기법을 제시한다. 대장통과시간 검사는 대장의 운동질환을 평가하는데 있어 가장 기본적인 방법으로 특히 만성 변비증 환자의 병태생리에 따른 유형 분류와 치료 계획을 설정하는데 큰 도움을 주고 있으며, 내과적 또는 외과적 치료 후 평가에도 유용한 검사이다. 대장통과시간 검사는 방사선 비투과성 표지자가 내재되어 있는 캡슐을 복용한 뒤 주기적으로 단순복부 X-Ray 촬영을 통해 구간별로 남아있는 표지자의 수를 세고, 이를 통해 구역별 통과시간을 측정한다. 이 과정에서 판독의가 직접 표지자의 위치 및 개수를 세기 때문에 많은 시간이 필요하게 된다. 따라선 본 논문에서는 이러한 단점을 보완하기 위해 딥러닝 기법을 사용하여 X-Ray 영상 내에서 표지자의 위치를 자동 파악하는 기법을 제시한다.

  • PDF

Improvement of concrete crack detection using Dilated U-Net based image inpainting technique (Dilated U-Net에 기반한 이미지 복원 기법을 이용한 콘크리트 균열 탐지 개선 방안)

  • Kim, Su-Min;Sohn, Jung-Mo;Kim, Do-Soo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.65-68
    • /
    • 2021
  • 본 연구에서는 Dilated U-Net 기반의 이미지 복원기법을 통해 콘크리트 균열 추출 성능 개선 방안을 제안한다. 콘크리트 균열은 구조물의 미관상의 문제뿐 아니라 추후 큰 안전사고의 원인이 될 수 있어 초기대응이 중요하다. 현재는 점검자가 직접 육안으로 검사하는 외관 검사법이 주로 사용되고 있지만, 이는 정확성 및 비용, 시간, 그리고 안전성 면에서 한계를 갖고 있다. 이에 콘크리트 구조물 표면에 대해 획득한 영상 처리 기법을 사용한 검사 방식 도입의 관심이 늘어나고 있다. 또한, 딥러닝 기술의 발달로 딥러닝을 적용한 영상처리의 연구 역시 활발하게 진행되고 있다. 본 연구는 콘크리트 균열 추개선출 성능 개선을 위해 Dilated U-Net 기반의 이미지 복원기법을 적용하는 방안을 제안하였고 성능 검증 결과, 기존 U-Net 기반의 정확도가 98.78%, 조화평균 82.67%였던 것에 비해 정확도 99.199%, 조화평균 88.722%로 성능이 되었음을 확인하였다.

  • PDF

Physical and Deep Learning Hybrid Flood Forecasting Model for Ungauged Watersheds (미계측 유역을 위한 물리 및 딥러닝 기반 하이브리드 홍수 예측 모형)

  • Minyeob Jeong;Junho Cha;Chaeyeon Jin;Dae-Hong Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.94-94
    • /
    • 2023
  • 유역에서의 홍수를 예측하기 위한 다양한 강우-유출 모형들이 개발되어 사용되고 있다. 개념적 강우-유출 모형들은 신뢰성과 적용성이 높아 실무에서 널리 활용되어왔으나, 강우-유출 과정을 단순화하여 고려하므로 유출예측의 정확도에 한계가 있다. 또한 모형의 매개변수에 여러 불확실성이 존재하므로 충분한 양의 관측자료를 사용한 보정 작업이 필요하다. 물리적 강우-유출 모형들은 유출예측 결과가 비교적 물리적으로 정확하다는 장점이 있지만, 높은 계산 비용 및 수치적 불안정성으로 인하여 실무에의 적용이 힘들다. 본 연구에서는 홍수 예측의 정확도와 효율성을 모두 확보할 수 있는 하이브리드 기법을 개발하였다. 본 연구에서 개발한 기법은 물리적 모형인 동역학파 모형과 개념적 모형인 순간단위도 모형, 그리고 딥러닝 모형을 결합하여 사용하는 기법이다. 유역의 조도계수 및 지형을 활용한 동역학파 시뮬레이션을 수행하였으며, 동역학파 시뮬레이션 결과 및 멱함수로 나타내어지는 비선형적 강우-유출 관계를 이용하여 유역의 순간단위도를 유도였다. 또한, 딥러닝 모형인 LSTM 모형을 활용하여 강우손실 매개변수를 추정하였으며, 이를 이용하여 강우손실을 계산한 후 유효강우주상도를 산정하였다. 그리고 유역 출구에서의 홍수수문곡선은 유효강우주상도와 순간단위도를 활용한 회선적분을 통해 예측되었다. 본 연구에서 개발한 기법을 시험유역 및 자연유역에서의 홍수 예측에 적용해보았으며, 예측 결과는 NSE=0.55-0.90, R2=0.67-0.95의 높은 정확도를 보였다. 본 연구에서 유도하는 순간단위도는 한 유역에서 유일하지 않으며, 유효 강우강도의 함수이므로 홍수 예측에 비선형적 강우-유출 관계를 고려할 수 있으며, 수많은 유효 강우강도에 대한 순간단위도들은 멱함수를 이용하여 순간적으로 유도될 수 있다. 또한, 유역의 강우 특성이나 지표면의 토양수분, 식생과 같은 특성을 딥러닝 모형을 통해 고려함으로써 강우 손실 산정의 불확실성을 줄일 수 있다. 또한, 순간단위도 유도를 위한 기초작업인 동역학파 시뮬레이션은 유역의 지형과 조도계수만을 필요로 하므로 미계측 유역에의 적용이 유리하다.

  • PDF

Deep-learning-based GPR Data Interpretation Technique for Detecting Cavities in Urban Roads (도심지 도로 지하공동 탐지를 위한 딥러닝 기반 GPR 자료 해석 기법)

  • Byunghoon, Choi;Sukjoon, Pyun;Woochang, Choi;Churl-hyun, Jo;Jinsung, Yoon
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.189-200
    • /
    • 2022
  • Ground subsidence on urban roads is a social issue that can lead to human and property damages. Therefore, it is crucial to detect underground cavities in advance and repair them. Underground cavity detection is mainly performed using ground penetrating radar (GPR) surveys. This process is time-consuming, as a massive amount of GPR data needs to be interpreted, and the results vary depending on the skills and subjectivity of experts. To address these problems, researchers have studied automation and quantification techniques for GPR data interpretation, and recent studies have focused on deep learning-based interpretation techniques. In this study, we described a hyperbolic event detection process based on deep learning for GPR data interpretation. To demonstrate this process, we implemented a series of algorithms introduced in the preexisting research step by step. First, a deep learning-based YOLOv3 object detection model was applied to automatically detect hyperbolic signals. Subsequently, only hyperbolic signals were extracted using the column-connection clustering (C3) algorithm. Finally, the horizontal locations of the underground cavities were determined using regression analysis. The hyperbolic event detection using the YOLOv3 object detection technique achieved 84% precision and a recall score of 92% based on AP50. The predicted horizontal locations of the four underground cavities were approximately 0.12 ~ 0.36 m away from their actual locations. Thus, we confirmed that the existing deep learning-based interpretation technique is reliable with regard to detecting the hyperbolic patterns indicating underground cavities.

Review of Artificial Intelligence and Deep Learning Technique for Hydrologic Prediction (수난 예측을 위한 인공지능 및 딥러닝 기법)

  • Hwang, SeokHwan;Lee, Jeongha;Oh, Byoung-Hwa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.372-372
    • /
    • 2020
  • 사회가 다원화되고 발달하면서 생활환경과 행동양식에 따라 홍수 등의 수난(水難) 으로 인한 피해 정도와 양상은 크게 달라질 수 있으나, 수난으로 인한 체감 가능한 피해의 정도와 규모는 예측이 어려운 현실이다. 그리고, 최근 인터넷과 소셜 네트워크 서비스(SNS)의 급진적 발달은 재난 관리에 대중적 지식을 수집하여 활용하도록 촉진하고 있고, 이로 인해 재난 상황에서 '대중적인 정보가 기술자에 의해 어떻게 얼마나 신중하게 고려되어야 하는지와 어떻게 과학적으로 해석해야하는지'가 핵심 쟁점으로 부상하고 있다. 본 연구에서는 최근 널리 사용되는 인공지능 및 딥러닝 기법을 조사 분석하였다. 분석을 통해 수문 예측 분야에서 이러한 기술이 적용된 사례와 신기술을 조망해 보고 기존 기술이 인공지능 및 딥러닝 기법의 적용으로 대체 가능한 정도를 가늠해 보았다.

  • PDF

Research Paper Classification Scheme based on CNN with LSTM and GRU (CNN과 LSTM 및 GRU 기반 연구 논문 분류 시스템의 설계 및 구현)

  • Dipto, Biswas;Kang, Jihun;Gil, Joon-Min
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.612-614
    • /
    • 2022
  • 최근 딥러닝 기술은 자연어처리에서 기본적이고 필수적인 기법으로 자연어처리에 필요한 복잡한 비선형 관계를 모델링할 수 있다. 본 논문에서는 LSTM(Long Short-Term Memory)과 GRU(Gated Recurrent Unit) 딥러닝 기술을 연구 논문 분류에 적용하며, CNN(Convolutional Neural Network)에 LSTM과 GRU을 각각 결합하여 특정 분야의 연구 논문을 분류하고 연구 논문을 추천하는 기법을 제안한다. 워드 임베딩과 딥러닝 기법을 연구 논문 분류에 적용하여 관심이 있는 단어와 단어 주변의 단어들 사이의 유사성과 성능을 비교 분석한다.

Focal Calibration Loss-Based Knowledge Distillation for Image Classification (이미지 분류 문제를 위한 focal calibration loss 기반의 지식증류 기법)

  • Ji-Yeon Kang;Jae-Won Lee;Sang-Min Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.695-697
    • /
    • 2023
  • 최근 몇 년 간 딥러닝 기반 모델의 규모와 복잡성이 증가하면서 강력하고, 높은 정확도가 확보되지만 많은 양의 계산 자원과 메모리가 필요하기 때문에 모바일 장치나 임베디드 시스템과 같은 리소스가 제한된 환경에서의 배포에 제약사항이 생긴다. 복잡한 딥러닝 모델의 배포 및 운영 시 요구되는 고성능 컴퓨터 자원의 문제점을 해결하고자 사전 학습된 대규모 모델로부터 가벼운 모델을 학습시키는 지식증류 기법이 제안되었다. 하지만 현대 딥러닝 기반 모델은 높은 정확도 대비 훈련 데이터에 과적합 되는 과잉 확신(overconfidence) 문제에 대한 대책이 필요하다. 본 논문은 효율적인 경량화를 위한 미리 학습된 모델의 과잉 확신을 방지하고자 초점 손실(focal loss)을 이용한 모델 보정 기법을 언급하며, 다양한 손실 함수 변형에 따라서 지식증류의 성능이 어떻게 변화하는지에 대해 탐구하고자 한다.

Deep Learning Based Error Control in Electric Vehicle Charging Systems Using Power Line Communication (전력선 통신을 이용한 전기자동차 충전 시스템에서 딥 러닝 기반 오류제어)

  • Sun, Young Ghyu;Hwang, Yu Min;Sim, Issac;Kim, Jin Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.150-158
    • /
    • 2018
  • In this paper, we introduce an electric vehicle charging system using power line communication and propose a method to correct the error by applying a deep learning algorithm when an error occurs in the control signal of an electric vehicle charging system using power line communication. The error detection and correction of the control signal can be solved through the conventional error correcting code schemes, but the error is detected and corrected more efficiently by using the deep learning based error correcting code scheme. Therefore, we introduce deep learning based error correction code scheme and apply this scheme to electric vehicle charging system using power line communication. we proceed simulation and confirm performance with bit error rate. we judge whether the deep learning based error correction code scheme is more effective than the conventional schemes.

딥러닝을 활용한 선박가치평가 모델 개발

  • Choi, Jung-suk;Kim, Donggyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2020.11a
    • /
    • pp.108-110
    • /
    • 2020
  • 본 연구의 목적은 딥러닝 기법의 하나인 인공신경망 모델을 활용하여 선박의 가치평가 모델을 개발하는 것이다. 선박의 가치는 해운시장 변화와 밀접한 관계가 있으며, 경기 변동성이 크고 시장 민감성이 높은 해운시장의 특성상 가치의 불확실성 역시 높게 나타나고 있다. 이러한 선박가치의 중요성에도 불구하고 국내외적으로 선박가치평가의 체계 개선 및 평가모델의 객관성과 신뢰성을 제고시키기 위한 연구는 부족한 실정이다. 따라서 본 연구에서는 딥러닝 방법을 통해 선박의 가치를 산출하는 새로운 평가모델을 제시하고자 한다. 가치평가의 대상은 중고 VLCC선이며, 선행연구를 통해 선박의 가치 변화를 유발하는 주요 요인들을 선별하여 변수를 설정하고 2010년 1월부터 현재까지의 해당 데이터를 확보하였다. 교차검증을 통해 파라미터들을 추정하여 인공신경망의 최적 구조를 식별하고 이에 대한 객관성과 신뢰성을 검증한 결과 인공신경망 모델의 가치평가 정확성이 우수함을 확인하였다. 본 연구는 선박가치평가의 전통적 방법론에서 탈피하여 기계학습 기반의 딥러닝 모델을 활용한 측면에서 독창적인 의미가 있다.

  • PDF

A Study on Traffic Light Detection based on Deep Learning (딥러닝 기반 신호등 검출에 관한 연구)

  • Pak, Myeong-Suk;Kim, Sang-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.969-970
    • /
    • 2017
  • 차량의 자율주행을 위해서 신호등의 검출은 매우 중요한 부분이며, 최근 딥러닝 기술이 자율주행 및 운전자 보조 시스템에 적용되고 있다. 본 논문에서는 객체 검출을 위한 잘 알려진 딥러닝 기법을 신호등 검출에 적용해 본다. 공개된 데이터셋을 이용하였으며 일반적인 컴퓨터 구성에서 실험하여 신호등 검출을 하였다.