• 제목/요약/키워드: 딥러닝 기법

검색결과 1,104건 처리시간 0.024초

BERT-Fused Transformer 모델에 기반한 한국어 형태소 분석 기법 (Korean Morphological Analysis Method Based on BERT-Fused Transformer Model)

  • 이창재;나동열
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권4호
    • /
    • pp.169-178
    • /
    • 2022
  • 형태소는 더 이상 분리하면 본래의 의미를 잃어버리는 말의 최소 단위이다. 한국어에서 문장은 공백으로 구분되는 어절(단어)의 조합이다. 형태소 분석은 어절 단위의 문장을 입력 받아서 문맥 정보를 활용하여 형태소 단위로 나누고 각 형태소에 적절한 품사 기호를 부착한 결과를 생성하는 것이다. 한국어 자연어 처리에서 형태소 분석은 가장 핵심적인 태스크다. 형태소 분석의 성능 향상은 한국어 자연어 처리 태스크의 성능 향상에 직결된다. 최근 형태소 분석은 주로 기계 번역 관점에서 연구가 진행되고 있다. 기계 번역은 신경망 모델 등으로 어느 한 도메인의 시퀀스(문장)를 다른 도메인의 시퀀스(문장)로 바꾸는 것이다. 형태소 분석을 기계 번역 관점에서 보면 어절 도메인에 속하는 입력 시퀀스를 형태소 도메인 시퀀스로 변환하는 것이다. 본 논문은 한국어 형태소 분석을 위한 딥러닝 모델을 제안한다. 본 연구에서 사용하는 모델은 기계 번역에서 높은 성능을 기록한 BERT-fused 모델을 기반으로 한다. BERT-fused 모델은 기계 번역에서 대표적인 Transformer 모델과 자연어 처리 분야에 획기적인 성능 향상을 이룬 언어모델인 BERT를 활용한다. 실험 결과 형태소 단위 F1-Score 98.24의 성능을 얻을 수 있었다.

패치 특징 코어세트 기반의 흉부 X-Ray 영상에서의 병변 유무 감지 (Leision Detection in Chest X-ray Images based on Coreset of Patch Feature)

  • 김현빈;전준철
    • 인터넷정보학회논문지
    • /
    • 제23권3호
    • /
    • pp.35-45
    • /
    • 2022
  • 현대에도 일부 소외된 지역에서는 의료 인력의 부족으로 인해 위·중증 환자에 대한 치료가 지연되는 경우가 많다. 의료 데이터에 대한 분석을 자동화하여 의료 서비스의 접근성 문제 및 의료 인력 부족을 해소하고자 하는 연구가 계속되고 있다. 컴퓨터 비전 기반의 진료 자동화는 훈련 목적에 대한 데이터 수집 및 라벨링 작업에서 많은 비용이 요구된다. 이러한 점은 희귀질환이나 시각적으로 뚜렷하게 정의하기 어려운 병리적 특징 및 기전을 구분하는 작업에서 두드러진다. 이상 탐지는 비지도 학습 전략을 채택함으로써 데이터 수집 비용을 크게 절감할 수 있는 방법으로 주목된다. 본 논문에서는 기존의 이상 탐지 기법들을 기반으로, 흉부 X-RAY 영상에 대해 이상 탐지를 수행하는 방법을 다음과 같이 제안한다. (1) 최적 해상도로 샘플링된 의료 영상의 색상 범위를 정규화한다. (2) 무병변 영상으로부터 패치 단위로 구분된 중간 수준 특징 집합을 추출하여 그 중 높은 표현력을 가진 일부 특징 벡터들을 선정한다. (3) 최근접 이웃 탐색 알고리즘을 기반으로 미리 선정된 무병변(정상) 특징 벡터들과의 차이를 측정한다. 본 논문에서는 PA 방식으로 촬영된 흉부 X-RAY 영상들에 대한 제안 시스템의 이상 탐지 성능을 세부 조건에 따라 상세히 측정하여 제시한다. PadChest 데이터세트로부터 추출한 서브세트에 대해 0.705 분류 AUROC를 보임으로써 의료 영상에 대한 이상 탐지 적용의 효과를 입증하였다. 제안 시스템은 의료 기관의 임상 진단 워크플로우를 개선하는 데에 유용하게 사용될 수 있으며, 의료 서비스 접근성이 낮은 지역에서의 조기 진단을 효율적으로 지원할 수 있다.

CAE 알고리즘을 이용한 레이더 강우 보정 평가 (Application of convolutional autoencoder for spatiotemporal bias-correction of radar precipitation)

  • 정성호;오성렬;이대업;레수안히엔;이기하
    • 한국수자원학회논문집
    • /
    • 제54권7호
    • /
    • pp.453-462
    • /
    • 2021
  • 최근 몇 년 동안 국지성 집중호우의 빈도가 증가함에 따라 고해상도 레이더 자료의 중요성 및 활용성이 증가하고 있다. 하지만 여전히 레이더 자료의 경우 시·공간적 편의가 존재하고 이를 보정하는 것이 매우 중요하며 많은 연구에서 레이더 강우의 편의 보정을 위해 다양한 통계적 기법이 시도되었다. 본 연구에서는 시·공간적으로 강우를 추정할 수 있는 이중편파레이더의 편의를 지점 강우와 비교하여 보정하는 것을 목표로 한다. 환경부의 수자원관리 및 홍수 예측에 사용되는 S-밴드 이중편파레이더의 편의 보정을 위하여 합성곱신경망(Convolutional Neural Network, CNN)기반의 Convolutional Autoencoder (CAE) 알고리즘을 구축하여 편의 보정을 수행하였다. CAE 모델의 입력자료는 환경부의 10분 단위 레이더 합성 강우자료와 같은 공간해상도로 보간된 지점 관측 강우자료를 사용하였으며, 자료의 기간은 미호천 유역에 홍수 경보가 발령된 2017년 7월 16일 00시부터 13시까지의 10분 단위 자료를 사용하였다. 그 결과로 지점 강우 대비 원시 레이더 강우의 편의가 줄어듦을 확인할 수 있으며 시·공간적으로 개선된 결과를 보여주고 있다. 따라서 각 인접한 격자 간의 공간 관계를 학습하는 CAE 모델은 레이더 및 위성에서 추정되는 격자형 기후 자료의 실시간 편의 보정에 사용할 수 있을 것으로 분석되었다.

라즈베리파이와 YOLOv5를 이용한 해양쓰레기 시계열 변화량 분석 (Analysis Temporal Variations Marine Debris by using Raspberry Pi and YOLOv5)

  • 김보람;박미소;김재원;도예빈;오세윤;윤홍주
    • 한국전자통신학회논문지
    • /
    • 제17권6호
    • /
    • pp.1249-1258
    • /
    • 2022
  • 해양쓰레기란 고의 또는 부주의로 해안에 방치되거나 해양으로 유입·배출되어 해양환경에 해로운 결과를 미치거나 미칠 우려가 있는 물질로 정의된다. 본 연구에서는 효율적인 해양쓰레기 수량 파악 방법 및 변화량 분석을 위하여 객체 탐지 기법을 이용한 해양쓰레기 탐지 및 해양쓰레기의 변화량 분석을 수행하였다. 연구지역은 거제도 북동부 유호 몽돌 해수욕장이며 2022년 9월 12일부터 10월 14일까지 32일 동안 15분 간격으로 수집한 이미지를 통해 변화량을 분석하였다. One-Stage 방식의 객체 탐지 모델인 YOLOv5x를 이용한 해양쓰레기 탐지는 페트병 mAP 0.869, 스티로폼 부표 mAP 0.862의 성능을 도출하였다. 결과적으로 해양쓰레기는 8일 간격으로 큰 감소 폭을 보였으며, 성상별로는 스티로폼 부표의 수량이 3배 정도 많고 변화폭 역시 더 크게 나타남을 파악하였다.

공공 다중CCTV 기반에서 재식별 기술을 활용한 특정대상 탐지 및 추적기법 구현 (Implementation of Specific Target Detection and Tracking Technique using Re-identification Technology based on public Multi-CCTV)

  • 황주성;뉴엔탄하이;강수경;김영규;김주용;정명석;이주연
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.49-57
    • /
    • 2022
  • 정부에서는 전국에 설치된 공공 CCTV를 이용하여 실종아동 등 범죄 예방을 위하여 많은 노력을 하고 있다. 하지만, 운용인력의 부족과 장시간 집중에 따른 집중력 약화 그리고 추적의 어려움 등이 나타나고 있다. 또한, 딥러닝 알고리즘을 통하여 실시간 객체 탐색 및 재인식 그리고 추적을 적용하는 것은 복잡한 신경망 분석의 사유로 파라미터가 증가하고 속도감소 메모리 부족이라는 현상을 나타냈다. 본 논문에서는 실시간 객체 인식이 가능한 Yolo의 적용과 Batch 및 TensorRT 기술 적용을 통하여 신경망을 경량화를 통하여 속도 개선 및 메모리 절약이 가능하도록 설계하였다. 이 논문에서는 이러한 발전된 알고리즘의 연구를 바탕으로 K-reciprocal nearest neighbor 알고리즘, Jaccard distance 비유사도 측정 알고리즘, 산출물 알고리즘 등을 개발하여 공공 CCTV 식별추적시스템 구축을 제시하였다. 그 결과, 비교분석을 통한 알고리즘 조합을 통해 공공 다중CCTV환경에서 실시간으로 객체를 인식하고 재식별하여 객체를 추적할 수 있는 한국형 공공 추적시스템을 제안하였다.

x-vector를 이용한 다화자 음성합성 시스템 (A Multi-speaker Speech Synthesis System Using X-vector)

  • 조민수;권철홍
    • 문화기술의 융합
    • /
    • 제7권4호
    • /
    • pp.675-681
    • /
    • 2021
  • 최근 인공지능 스피커 시장이 성장하면서 사용자와 자연스러운 대화가 가능한 음성합성 기술에 대한 수요가 증가하고 있다. 따라서 다양한 음색의 목소리를 생성할 수 있는 다화자 음성합성 시스템이 필요하다. 자연스러운 음성을 합성하기 위해서는 대용량의 고품질 음성 DB로 학습하는 것이 요구된다. 그러나 많은 화자가 발화한 고품질의 대용량 음성 DB를 수집하는 것은 녹음 시간과 비용 측면에서 매우 어려운 일이다. 따라서 각 화자별로는 소량의 학습 데이터이지만 매우 많은 화자의 음성 DB를 사용하여 음성합성 시스템을 학습하고, 이로부터 다화자의 음색과 운율 등을 자연스럽게 표현하는 기술이 필요하다. 본 논문에서는 화자인식 기술에서 사용하는 딥러닝 기반 x-vector 기법을 적용하여 화자 인코더를 구성하고, 화자 인코더를 통해 소량의 데이터로 새로운 화자의 음색을 합성하는 기술을 제안한다. 다화자 음성합성 시스템에서 텍스트 입력에서 멜-스펙트로그램을 합성하는 모듈은 Tacotron2로, 합성음을 생성하는 보코더는 로지스틱 혼합 분포가 적용된 WaveNet으로 구성되어 있다. 학습된 화자 임베딩 신경망에서 추출한 x-vector를 Tacotron2에 입력으로 추가하여 원하는 화자의 음색을 표현한다.

3D 공간정보를 활용한 터널 설계 자동화 기술 개발 및 적용 사례 : 남해 서면-여수 신덕 국도 건설공사 BIM기반 설계를 중심으로 (Development and Application of Tunnel Design Automation Technology Using 3D Spatial Information : BIM-Based Design for Namhae Seomyeon - Yeosu Shindeok National Highway Construction)

  • 조은지;김우진;김광염;정재호;방상혁
    • 터널과지하공간
    • /
    • 제33권4호
    • /
    • pp.209-227
    • /
    • 2023
  • 정부는 건설산업의 생산성 혁신을 위해 BIM 기반 스마트 건설기술 활성화방안을 지속적으로 발표하고 있다. 설계단계에서는 BIM 데이터와 다른 첨단기술을 융합하여 설계 자동화와 최적화 수행을 목표로 한다. 국내 해저터널 사업인 남해 서면-여수 신덕 국도 건설공사 기본설계에서는 터널설계 프로세스에 따라 3D 공간정보를 이용한 터널설계 자동화 기술을 개발하여 BIM 기반의 설계를 수행하였다. 터널의 선형설계에 제너레이티브 디자인 기법을 사용하여 만 여건 이상의 케이스를 36시간 내에 도출하고, 설계자가 정의한 목적함수의 정량적 평가를 수행하여 설계자가 요구하는 조건의 최적 선형을 도출했다. AI 기반의 지반분류와 3D Geo Model을 구축하여 최적 선형의 경제성 및 안정성을 평가하였다. AI 기반의 지반분류는 시추 코어 1공당 약 30종의 지반분류를 수행하여 그 정밀도를 향상시켰고, 3D Geo Model의 경우 시공 중 추가되는 지반 데이터를 누적할 수 있다는 점에서 그 활용도를 기대할 수 있다. 3D 발파설계의 경우 Dynamo 상에서 노선상의 모든 보안물건을 검토하여 최적 장약량을 5분 만에 도출하고, 직관적이고 편리한 시공관리를 위해 3D 공간상에 설계 결과를 시각화함으로서 시공 중에 직접 활용할 수 있도록 했다.

Plasma Sheath Monitoring Sensor 데이터를 활용한 질소이온 상태예측 모형의 기계학습 (Efficient Multicasting Mechanism for Mobile Computing Environment Machine learning Model to estimate Nitrogen Ion State using Traingng Data from Plasma Sheath Monitoring Sensor)

  • 정희진;유진승;정민중
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.27-30
    • /
    • 2022
  • 기존의 공정방식에 비해 효율성이나 환경적 면에서 많은 장점을 가진 플라즈마 공정은 반도체 제작에서 널리 사용되고 있다. Plasma Sheath란 플라즈마 bulk와 그 것을 둘러싸고 있는 챔버 벽면과 전극 사이에서 관찰되는 어두운 영역으로 양이온과 전자의 이동속도 차이로 인해 발생한다. Plasma Sheath Monitoring Sensor (PSMS)는 플라즈마와 전극 사이의 전압(Voltage) 차이와 전극에 걸리는 RF power 등을 실시간으로 측정하는 센서로서 플라즈마 챔버 내에서 플라즈마의 상태와 매우 상관도가 높을 것으로 기대된다. 본 연구에서는 PSMS 데이터를 활용하여 플라즈마 챔버 내의 질소이온의 상태를 예측하는 모형을 딥러닝 기계학습 기법을 이용하여 구축하였다. 연구에 사용된 데이터는 파워와 압력을 달리 셋팅한 실험에서 측정된 PSMS 데이터를 학습데이터로 활용하고 플라즈마 bulk와 Si substrate에서 측정된 질소 이온의 비율, 플럭스, 밀도를 레이블로 활용하였다. 본 연구의 결과는 향후 플라즈마 공정의 최적화 및 실시간 정밀제어를 위한 인공지능 기술의 기초가 될 것으로 기대된다.

  • PDF

변동성 돌파 전략을 사용한 S&P 500 지수의 자동 거래와 매수 및 보유 비교 연구 (Comparative Study of Automatic Trading and Buy-and-Hold in the S&P 500 Index Using a Volatility Breakout Strategy)

  • 홍성혁
    • 사물인터넷융복합논문지
    • /
    • 제9권6호
    • /
    • pp.57-62
    • /
    • 2023
  • 본 연구는 미국 S&P 500 지수를 변동성 돌파 전략을 활용하여 Buy and Hold 방식과 비교 분석한 연구이다. 변동성 돌파 전략은 시장의 상대적 안정 또는 집중된 시기 후의 가격 움직임을 활용하는 거래 전략이다. 특히, 낮은 변동성 기간 후에 큰 가격 움직임이 더 자주 발생한다는 것이 관찰된다. 주식이 한동안 좁은 가격 범위에서 움직이다가 가격이 갑작스레 상승 또는 하락하는 경우, 그 주식이 해당 방향으로 계속 움직일 것으로 예상된다. 이러한 움직임을 활용하기 위해 거래자들은 변동성 돌파 전략을 채택한다. 'k' 값은 최근 시장 변동성의 측정값에 곱하는 배수로서 활용된다. 변동성의 측정 방법 중 하나로는 최근 거래일의 최고가와 최저가 차이를 나타내는 평균 진정 범위(ATR)가 있다. 'k' 값은 거래자들이 거래 임계값을 설정하는 데 중요한 역할을 한다. 본 연구는 'k' 값을 일반적인 값으로 연산하여 Buy and Hold 전략과 수익률을 비교 하여, 변동성 돌파전략을 사용한 알고리즘 트레이딩이 약간은 높은 수익률을 이룩하였다. 추후에는 인공 지능 딥러닝 기법을 이용하여 S&P 500 지수의 자동 거래를 위한 최적의 K 값을 구하고, 이를 통해 수익률을 극대화하기 위한 시뮬레이션 결과를 제시할 예정이다.

지하매설물의 기하학적 특성에 따른 전기저항 변화에 대한 수치 해석 연구 (Numerical Analysis of Electrical Resistance Variation according to Geometry of Underground Structure)

  • 김태영;류희환;정성훈
    • 대한토목학회논문집
    • /
    • 제44권1호
    • /
    • pp.49-62
    • /
    • 2024
  • 급격한 도시화로 인한 지하의 무분별한 개발은 기존 지하매설물의 점검과 교체 그리고 새로운 지하시설물 설치에 지연을 일으키고 있다. 최근에는 체계화된 시스템을 도입하여 지하시설물을 관리하고 있지만, 실제 시공은 현장 여건에 따라서 설계 도면과 다르게 진행되기 때문에 기존 지하매설물의 부정확한 위치 정보로 사고가 끊임없이 발생하고 있다. 한편, 전기비저항 탐사는 전극을 지반에 관입시켜 전극 간 전위차로 지반의 전기저항을 측정하는 방식이며, 비파괴 물리탐사 기법으로서 널리 이용되고 있다. 그리고 다수의 전극 쌍을 이용하여 복잡한 지하 구조를 영상화하고, 딥러닝 알고리즘을 활용한 데이터 해석 기술들이 비약적으로 발전하였지만, 아직 지하매설물의 기하학적 조건에 따른 전기저항 변화를 정량적으로 평가한 기초적인 연구로서는 진행된 바가 없다. 본 연구에서는 전극과 지하매설물의 기하학적 매개 변수 해석을 통해서 전기저항 변화를 평가하였다. 먼저, 이론식과 수치 해석의 전기저항값 차이가 작게 나타난 정량화된 메쉬를 적용하여 3차원 전기저항 수치 해석 모듈을 개발하고, 매설물의 깊이, 크기, 그리고 전극과 매설물 간 이격거리에 따른 매개 변수 해석을 통해서 정상 직류 상태에서 전기저항 변화를 정량적으로 비교하였다. 전기저항은 매설물이 얕은 깊이에 위치하고, 크기가 크고, 전극과의 이격거리가 가까울수록 높게 측정되었다. 추가적으로 전극과 지하매설물 주변에 형성된 전위 및 전류밀도 분포를 분석하여 터미널 전극 주변에서 측정된 전기저항을 고찰하였다.