• Title/Summary/Keyword: 딥러닝학습

Search Result 1,518, Processing Time 0.031 seconds

A Study on Development Deep Learning Based Learning System for Enhancing the Data Analytical Thinking (데이터 분석적 사고력 향상을 위한 딥러닝 기반 학습 시스템 개발 연구)

  • Lee, Young-ho;Koo, Duk-hoi
    • Journal of The Korean Association of Information Education
    • /
    • v.21 no.4
    • /
    • pp.393-401
    • /
    • 2017
  • The purpose of this study is to develop a deep learning based learning system for improving learner's data analytical thinking ability. The contents of the study are as follows. First, deep learning was applied to the discovery learning model to improve data analytical thinking ability. This is a learning method that can generate a model showing the relationship of given data by using the deep learning method, then apply the model to new data to obtain the result. Second, we developed a deep learning based system for DBD learning model. Specifically, we developed a system to generate a model of data using the deep learning method and to apply this model. The research of deep learning based learning system will be a new approach to improve learner's data analytical thinking ability in future society where data becomes more important.

Implementation of the Stone Classification with AI Algorithm Based on VGGNet Neural Networks (VGGNet을 활용한 석재분류 인공지능 알고리즘 구현)

  • Choi, Kyung Nam
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.32-38
    • /
    • 2021
  • Image classification through deep learning on the image from photographs has been a very active research field for the past several years. In this paper, we propose a method of automatically discriminating stone images from domestic source through deep learning, which is to use Python's hash library to scan 300×300 pixel photo images of granites such as Hwangdeungseok, Goheungseok, and Pocheonseok, performing data preprocessing to create learning images by examining duplicate images for each stone, removing duplicate images with the same hash value as a result of the inspection, and deep learning by stone. In addition, to utilize VGGNet, the size of the images for each stone is resized to 224×224 pixels, learned in VGG16 where the ratio of training and verification data for learning is 80% versus 20%. After training of deep learning, the loss function graph and the accuracy graph were generated, and the prediction results of the deep learning model were output for the three kinds of stone images.

Application of data preprocessing to improve the performance of the metaheuristic optimization algorithm-deep learning combination model (메타휴리스틱 최적화 알고리즘-딥러닝 결합모형의 성능 개량을 위한 데이터 전처리의 적용)

  • Ryu, Yong Min;Lee, Eui Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.114-114
    • /
    • 2022
  • 딥러닝의 학습 및 예측성능을 개선하기 위해서는 딥러닝 기법 내 연산과정의 개선과 함께 학습 및 예측에 사용되는 데이터의 전처리 과정이 중요하다. 본 연구에서는 딥러닝의 성능을 개량하기 위해 제안된 메타휴리스틱 최적화 알고리즘-딥러닝 결합모형과 데이터 전처리 기법을 통해 댐의 수위를 예측하였다. 수위예측을 위해 Multi-Layer Perceptron(MLP), 메타휴리스틱 최적화 알고리즘인 Harmony Search(HS)와 딥러닝을 결합한 MLP using a HS(MLPHS) 및 Exponential Bandwidth Harmony Search with Centralized Global Search(EBHS-CGS)와 딥러닝을 결합한MLP using a EBHS-CGS(MLPEBHS)를 통해 댐의 수위를 예측하였다. 메타휴리스틱 최적화 알고리즘-딥러닝 결합모형의 학습 및 예측성능을 개선하기 위해 학습 및 예측을 위한 자료를 기반으로 데이터 전처리기법을 적용하였다. 적용된 데이터 전처리 기법은 정규화, 수위구간별 사상(Event)분리 및 수위 변동에 대한 자료의 구분이다. 수위예측을 위한 대상유역은 금강유역에 위치한 대청댐으로 선정하였다. 대청댐의 수위예측을 위해 대청댐 상류에 위치하는 수위관측소 3개소를 선정하여 수위자료를 취득하였다. 각 수위관측소에서 취득한 수위자료를 입력자료로 설정하였으며, 대청댐의 수위자료를 출력자료로 설정하여 메타휴리스틱 최적화 알고리즘-딥러닝 모형의 학습을 진행하였다. 각 수위관측소 및 대청댐에서 취득한 수위자료는 2010년부터 2020년까지 총 11년의 일 단위 수위자료이며, 2010년부터 2019년까지의 자료를 학습자료로 사용하였으며, 2020년의 자료를 예측 및 검증자료로 사용하였다.

  • PDF

Deep Learning Model for Weather Forecast based on Knowledge Distillation using Numerical Simulation Model (수치 모델을 활용한 지식 증류 기반 기상 예측 딥러닝 모델)

  • 유선희;정은성
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.530-531
    • /
    • 2023
  • 딥러닝에서 지식 증류 기법은 큰 모델의 지식을 작은 모델로 전달하여 작은 모델의 성능을 개선하는 방식이다. 지식 증류 기법은 모델 경량화, 학습 속도 향상, 학습 정확도 향상 등에 활용될 수 있는데, 교사 모델이라 불리는 큰 모델은 일반적으로 학습된 딥러닝 모델을 사용한다. 본 연구에서는 학습된 딥러닝 모델 대신에 수치 기반 시뮬레이션 모델을 사용함으로써 어떠한 효과가 있는지 검증하였으며, 수치 모델을 활용한 기상 예측 모델에서의 지식 증류는 기존 단독 딥러닝 모델 학습 대비 더 작은 학습 횟수(epoch)에서도 동일한 에러 수준(RMSE)까지 도달하여, 학습 속도 측면에서 이득이 있음을 확인하였다.

Trends in deep learning techniques based on Homomorphic Encryption (동형암호 기반 딥러닝 기법 연구 동향)

  • Lim, Se-Jin;Kim, Hyun-Ji;Kang, Yea-Jun;Kim, Won-Woong;Seo, Hwa-Jeong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.505-508
    • /
    • 2022
  • 딥러닝 기술이 발전하면서 적용되는 산업 분야가 늘어남에 따라 딥러닝 모델에서 역으로 학습 데이터를 추출하는 등 다양한 딥러닝 모델 공격 이슈가 발생하고 있다. 이러한 위협에 대응하기 위해 딥러닝 학습에 사용되는 데이터의 노출을 방지할 수 있도록 사용자 프라이버시를 보호하는 기법의 중요성이 대두되고 있다. 동형암호는 학습 데이터를 보호할 수 있는 기법 중 하나로, 복호화 과정없이 암호화된 상태로 연산, 탐색, 분석 등을 수행할 수 있는 차세대 암호 알고리즘이다. 본 논문에서는 동형암호 기반의 딥러닝 기법 연구 동향에 대해 알아본다.

Development of Technique in Super Resolution domain that eliminates unnecessary Correlation information between Pixels & Channels. (픽셀, 채널간 불필요한 상호연관 정보를 제거하는 초해상화 딥러닝 기법)

  • Kang, Jung-Heum;Bae, Sung-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.656-659
    • /
    • 2020
  • 초해상화 딥러닝 기법은 학습 시 수렴하기까지 최소 수백 번의 에폭을 필요로 하며 오랜 시간이 걸린다. 최근, 영상 인식용 딥러닝 모델에서는 학습 수렴 속도를 향상시키기 위해 픽셀, 채널간 불필요한 상호연관 정보를 제거하는 Deconvolution 기술이 제안되었다. 본 논문에서는 최초로 Deconvolution 기술을 초해상화 딥러닝 방법에 적용하여 학습 수렴 속도 증가를 시도했다. 영상 인식 딥러닝 기법과 다르게 초해상화 딥러닝 기법은 이미지 특성 추출 부분과 이미지 복원 부분의 정보를 보존하는 것이 중요하기 때문에, EDSR을 Baseline 모델로 사용하여 양쪽 끝의 레이어는 기존의 Convolution 연산을 그대로 유지하고, 중간 레이어의 ResBlock 내의 Convolution 연산만 Deconvolution 연산으로 바꿔서 구성하였다. 초해상화 벤치마크 데이터셋을 사용한 실험 결과, 수렴속도가 빨라지지 않는 결과를 도출했다. 본 논문에서는 Deconvolution 기술이 Baseline 모델의 성능을 개선하지 못하는 이유를 초해상화 분야에서 기본적으로 적용되는 Residual Learning 기법 때문으로 분석했다.

  • PDF

The direction of development of the no code platform for AI model development (AI 개발을 위한 노 코드 플랫폼의 개발 방향)

  • Shin, Yujin;Yang, Huijin;Jang, Dayoung;Jang, Hyeonjun;Koh, Seokju;Han, Donghee
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.172-175
    • /
    • 2021
  • 4차 산업혁명이 시작된 이래로 다양한 산업 분야에서 AI가 활용되고 있고, 그 중에서도 컴퓨터 비전 분야에서 딥러닝 기술이 각광받고 있다. 하지만 딥러닝 기술은 높은 전문 지식이 요구되어 관련 지식이 없는 일반인들은 활용하기 어렵다. 본 논문에서는 AI 관련 배경지식이 없는 사용자들도 UI를 통해 쉽게 이미지 분류 모델을 학습시킬 수 있는 노 코드 플랫폼에 관하여 기술하고, django 프레임워크를 이용해 웹 개발과 딥러닝 모델 학습을 통합 개발을 위한 아키텍처와 방향성을 제시하고자 한다. 사용자가 웹서버에 업로드한 이미지들을 웹 인터페이스를 통해 라벨링 하여 학습 데이터를 생성한 후, 이 데이터를 사용하여 모델을 학습시킨다. CNN 모델에 데이터를 학습시키는 과정과 생성된 모델 기반으로 이미지 예측하는 모듈을 통해 전문지식이 없는 사용자가 딥러닝 기술에 대해 쉽게 이해하고 이용하는 것을 기대할 수 있다.

  • PDF

A mobile system development which has function of movie success prediction and recommendation based on deep learning (딥러닝 기반 영화 흥행 예측 및 영화 추천 모바일 시스템 개발)

  • Kim, Kyeong-Seok;Jang, Jae-Jun;Kang, Hyun-Kyu
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.443-448
    • /
    • 2019
  • 본 논문은 공공 데이터 Open API와 TMDB(The Movie Database) API를 이용하여 사용자의 선호 영화를 Google에서 제공해주는 Tensoflow로 인공신경망 딥러닝 학습하여 사용자가 선호하는 영화를 맞춤 추천하는 애플리케이션의 설계 및 구현에 대하여 서술한다. 본 애플리케이션은 사용자가 쉽게 영화를 추천받을 수 있도록 만들어진 애플리케이션으로 기존의 필터링 방식으로 추천하는 방식의 애플리케이션들과 달리 사용자의 취향을 딥러닝 학습을 통해 최적의 영화 Contents를 추천함과 아울러 기존 영화의 특성을 학습하여 흥행할 신규 영화를 예측하는 기능 또한 제공한다. 본 애플리케이션에 사용된 신규 영화 흥행 예측 모델은 약 85%의 정확도를 보이며 사용자 맞춤추천의 경우 기존 장르 추천이나 협업 필터링 추천보다 딥러닝을 통한 장르, 감독, 배우 등의 보다 세밀한 학습 추천이 가능하다.

  • PDF

Deep Learning-based Target Masking Scheme for Understanding Meaning of Newly Coined Words (신조어의 의미 학습을 위한 딥러닝 기반 표적 마스킹 기법)

  • Nam, Gun-Min;Seo, Sumin;Kwahk, Kee-Young;Kim, Namgyu
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.391-394
    • /
    • 2021
  • 최근 딥러닝(Deep Learning)을 활용하여 텍스트로 표현된 단어나 문장의 의미를 파악하기 위한 다양한 연구가 활발하게 수행되고 있다. 하지만, 딥러닝을 통해 특정 도메인에서 사용되는 언어를 이해하기 위해서는 해당 도메인의 충분한 데이터에 대해 오랜 시간 학습이 수행되어야 한다는 어려움이 있다. 이러한 어려움을 극복하고자, 최근에는 방대한 양의 데이터에 대한 학습 결과인 사전 학습 언어 모델(Pre-trained Language Model)을 다른 도메인의 학습에 적용하는 방법이 딥러닝 연구에서 많이 사용되고 있다. 이들 접근법은 사전 학습을 통해 단어의 일반적인 의미를 학습하고, 이후에 단어가 특정 도메인에서 갖는 의미를 파악하기 위해 추가적인 학습을 진행한다. 추가 학습에는 일반적으로 대표적인 사전 학습 언어 모델인 BERT의 MLM(Masked Language Model)이 다시 사용되며, 마스크(Mask) 되지 않은 단어들의 의미로부터 마스크 된 단어의 의미를 추론하는 형태로 학습이 이루어진다. 따라서 사전 학습을 통해 의미가 파악되어 있는 단어들이 마스크 되지 않고, 신조어와 같이 의미가 알려져 있지 않은 단어들이 마스크 되는 비율이 높을수록 단어 의미의 학습이 정확하게 이루어지게 된다. 하지만 기존의 MLM은 무작위로 마스크 대상 단어를 선정하므로, 사전 학습을 통해 의미가 파악된 단어와 사전 학습에 포함되지 않아 의미 파악이 이루어지지 않은 신조어가 별도의 구분 없이 마스크에 포함된다. 따라서 본 연구에서는 사전 학습에 포함되지 않았던 신조어에 대해서만 집중적으로 마스킹(Masking)을 수행하는 방안을 제시한다. 이를 통해 신조어의 의미 학습이 더욱 정확하게 이루어질 수 있고, 궁극적으로 이러한 학습 결과를 활용한 후속 분석의 품질도 향상시킬 수 있을 것으로 기대한다. 영화 정보 제공 사이트인 N사로부터 영화 댓글 12만 건을 수집하여 실험을 수행한 결과, 제안하는 신조어 표적 마스킹(NTM: Newly Coined Words Target Masking)이 기존의 무작위 마스킹에 비해 감성 분석의 정확도 측면에서 우수한 성능을 보임을 확인하였다.

  • PDF

Trends on Distributed Frameworks for Deep Learning (딥러닝 분산처리 기술동향)

  • Ahn, S.Y.;Park, Y.M.;Lim, E.J.;Choi, W.
    • Electronics and Telecommunications Trends
    • /
    • v.31 no.3
    • /
    • pp.131-141
    • /
    • 2016
  • 최근 알파고를 통해 인공지능 기술이 전 세계인의 이목을 집중시켰던 반면, 인공지능 연구자들은 인공지능 부활에 결정적 역할을 한 딥러닝 기술에 주목하고 있다. 딥러닝은 다계층 인공신경망 기반의 기계학습 기술로서 최근 컴퓨터 비전, 음성인식, 자연어 처리 분야에서 인식 성능을 높이는 데 중요한 역할을 하고 있다. 딥러닝 기술을 이용하여 기계가 수천만장의 이미지를 학습하여 객체를 인식하게 하고, 수천 시간의 음성 데이터를 학습하여 사람의 말을 알아듣게 처리하는 데에는 다수의 고성능 컴퓨터가 필요하다. 따라서 딥러닝에는 다수의 컴퓨터를 효율적으로 이용하기 위한 분산처리 기술이 필수적이며 관련 연구들이 활발히 진행되고 있다. 이에 본고는 다중 컴퓨터 노드들에서 딥러닝 모델을 분산처리할 수 있는 기존의 프레임워크들을 비교 분석하고 딥러닝 분산처리 기술에 대한 발전 방향을 전망한다.

  • PDF