• 제목/요약/키워드: 딤플 표면

검색결과 54건 처리시간 0.024초

딤플을 적용한 평판에 대한 항력 감소 연구 (Study on the Drag Reduction of 2-D Dimpled-Plates)

  • 백부근;편영식;김준형;김경열;김기섭;정철민;김찬기
    • 대한조선학회논문집
    • /
    • 제49권4호
    • /
    • pp.333-339
    • /
    • 2012
  • The main objective of the present study is to investigate the roles of the micro-dimpled surface on the drag reduction. To investigate the effectiveness of the micro-dimpled surface, the flat plates are prepared. The micro-size dimples are directly carved on the metal surface by ultrasonic nano-crystal surface modification (UNSM) method. Momentum of the main flow is increased by the dimple patterns within the turbulent boundary layer (TBL), however, there is no significant change in the turbulence intensity in the TBL. The influence of dimple patterns is examined through the flow field survey near the flat plate trailing edge in terms of the profile drag. The wake flow velocities in the flat plate are measured by PIV technique. The maximum drag reduction rate is 4.6% at the Reynolds number of $10^6{\sim}10^7$. The dimples tend to increase the drag reduction rate consistently even at high Reynolds number range.

W100×L25 마이크로 타원형 딤플패턴의 마찰특성 (Friction Characteristics of W100×L25 Micro Ellipse Type Pattern)

  • 최원식;권순홍;정성원;권순구;박종민;김종순;;채영훈
    • Tribology and Lubricants
    • /
    • 제28권3호
    • /
    • pp.136-141
    • /
    • 2012
  • In this paper, we investigated the friction characteristics of $W100^{\circ}{\o}L25m$ ellipse type surface pattern, on bearing steel. These characteristics are researched by utilizing a pin-on-disk wear test machine, under various velocities and other conditions. The reduction of friction is a necessary requirement for the improved efficiency of industrial parts. As the speed increases, there is a decrease in the effect of the dimple of friction characteristic in low velocity, with substantially little change to density. Conversely, as the load increases, the test direction of ellipse type dimple pattern, resulting in a difference in the texture of these two components. At a dimple density of 7.5% the friction characteristic is easily demonstrated, with a consistent change in both speed and load.

Surface Texturing한 평행 스러스트 베어링의 열유체윤활 해석: 딤플 반경과 깊이의 영향 (THD Analysis of a Surface Textured Parallel Thrust Bearing: Effect of Dimple Radius and Depth)

  • 정요한;박태조
    • Tribology and Lubricants
    • /
    • 제30권5호
    • /
    • pp.303-310
    • /
    • 2014
  • In order to reduce friction and improve reliability, researchers have applied various surface texturing methods to highly sliding machine elements such as mechanical seals and piston rings. Despite extensive theoretical research on surface texturing, previous numerical results are only applicable to isothermal and iso-viscous conditions. Because the lubricant flow pattern of textured bearing surfaces is much more complicated than that for non-textured bearings, the Navier?Stokes equation is more suitable than the Reynolds equation for the former. This study carries out a thermohydrodynamic (THD) lubrication analysis to investigate the lubrication characteristics of a single micro-dimpled parallel thrust bearing cell. The analysis involves using the continuity, Navier?Stokes, energy, temperature?viscosity relation, and heat conduction equations with the commercial computational fluid dynamics (CFD) code FLUENT. This study discretizes these equations using the finite volume method and solves them using the SIMPLE algorithm. The results include finding the streamlines, pressure and temperature distributions, and variations in the friction force and leakage for various dimple radii and depths. Increasing the dimple radius and decreasing the depth causes a recirculation flow to form because of a strong vortex, and the oil temperature greatly increases compared with the non-textured case. The present numerical scheme and results are applicable to THD analysis of various surface-textured sliding bearings and can lead to further study.

Surface Texturing한 평행 슬라이더 베어링의 열유체윤활 해석: 딤플 깊이의 영향 (Thermohydrodynamic Lubrication Analysis of Surface-Textured Parallel Slider Bearing: Effect of Dimple Depth)

  • 박태조;김민규
    • Tribology and Lubricants
    • /
    • 제33권6호
    • /
    • pp.288-295
    • /
    • 2017
  • In order to improve the efficiency and reliability of the machine, the friction should be minimized. The most widely used method to minimize friction is to maintain the fluid lubrication state. However, we can reduce friction only up to a certain limit because of viscosity. As a result of several recent studies, surface texturing has significantly reduced the friction in highly sliding machine elements, such as mechanical seals and thrust bearings. Thus far, theoretical studies have mainly focused on isothermal/iso-viscous conditions and have not taken into account the heat generation, caused by high viscous shear, and the temperature conditions on the bearing surface. In this study, we investigate the effect of dimple depth and film-temperature boundary conditions on the thermohydrodynamic (THD) lubrication of textured parallel slider bearings. We analyzed the continuity equation, the Navier-Stokes equation, the energy equation, and the temperature-viscosity and temperature-density relations using a computational fluid dynamics (CFD) code, FLUENT. We compare the temperature and pressure distributions at various dimple depths. The increase in oil temperature caused by viscous shear was higher in the dimple than in the bearing outlet because of the action of the strong vortex generated in the dimple. The lubrication characteristics significantly change with variations in the dimple depths and film-temperature boundary conditions. We can use the current results as basic data for optimum surface texturing; however, further studies are required for various temperature boundary conditions.

마찰제어를 위한 Surface texturing의 Micro-scale dimple 밀도영향 (Influence on a density of micro-scale dimple for surface texturing on friction control)

  • 채영훈;김석삼
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.945-950
    • /
    • 2004
  • Surface texturing of tribological application is another attractive technology of friction reducing. Also, reduction of friction is therefore considered to be a necessary requirement for improved efficiency of machine. In this paper attempts to investigate the effect of density for micro-scale dimple pattern on bearing steel flat mated with pin-on-disk. We demonstrated the lubrication mechanism for a Stribeck curve, which has a relationship between the friction coefficient and a dimensionless parameter for lubrication condition. It is found that friction coefficient is depended on the density of surface pattern. It was thus verified that micro-scale dimple could affect the friction reduction.Lubrication condition regime has an influence on the friction coefficient induced the density of micro dimple.

  • PDF

금속표면의 Surface texturing 효과에 대한 실험적 설계변수 (Experiment Design Parameter for the Effect of Surface Texturing on Metal Surface)

  • 채영훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1145-1150
    • /
    • 2005
  • The aim of this paper is to investigate the effect of surface texturing on metal surface and to understand the potential of friction reduction through micro-scale dimple to fabricate by photolithography on pin-on-disk test using flat-on-flat contact geometry. It was verify that the friction property with respect to the same pitch has been influence on the size of dimple under lubricated sliding contact. Also, we can recognize from Stribeck curve that the friction property has a connection with the size of dimple. It can explain a relationship between the friction coefficient and a dimensionless parameter for lubrication condition. The friction property has been an effect on the size of surface texture on reduction friction, not only because the density of dimple, but also because the ratio of diameter/pitch. This ratio of approximately 0.5 is recommend under the tested friction condition. It suggested that the ratio of d/p is an important parameter for surface texture design.

  • PDF

Micro-scale surface texturing을 기반으로 한 저마찰효과에 대한 기초연구 (Fundamental study on the effect of friction reduction based micro-scale surface texturing)

  • 채영훈;김석삼
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.17-24
    • /
    • 2004
  • Surrface texturing of tribological application is another attractive technology of friction reducing. Also, reduction of friction is therefore considered to be a necessary requirement for improved efficiency of machine. In this paper attempts to investigate the effect of density for micro-scale dimple pattern using photolithography on bearing steel flat mated with pin-on-disk. We demonstrated the lubrication mechanism for a Stribeck curve, which has a relationship between the friction coefficient and a dimensionless parameter for lubrication condition. It is found that friction coefficient is depended on the density of surface pattern. It was thus verified that micro-scale dimple could affect the friction reduction considerably under mixed and hydrodynamic lubrication conditions from based on friction map. Lubrication condition regime has an influence on the friction coefficient induced the density of micro dimple.

  • PDF

Groove에 의한 원주 후류의 유동구조 변화 (The Variation of the Wake behind a Circular Cylinder Having Arc Grooves)

  • 서성호;홍철현;부정숙
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.901-907
    • /
    • 2008
  • The measurements of velocity vectors are made in the wake(X/d=8) of a circular cylinder with arc grooves. The experiments are conducted by changing the groove number. groove depth, Reynolds number(Re) and the angle of the first formed groove. We know that the optimum groove angle is 70 degree and the wake velocity profiles are improved at a few conditions. According to vortex shedding frequency distributions. the key solutions to vary the flow field behind the circular cylinder are 70 degree groove angle and more deeper grooves than 0.2mm depth.

Hexagonal Array Micro-Scale Dimple Pattern의 밀도에 따른 마찰특성 (Friction Characteristics of Hexagonal Array Micro-scale Dimple Pattern by Density)

  • 채영훈;장충선;최원식
    • Tribology and Lubricants
    • /
    • 제24권6호
    • /
    • pp.368-373
    • /
    • 2008
  • This paper will investigate the friction characteristics of a 100m Hexagonal Array, Micro-scale Dimple Pattern, on bearing steel. These characteristics are researched by utilizing a pin-on-disk wear test machine, under various test conditions. The reduction of friction is a necessary requirement for the improved efficiency of this machine. As the speed increases, there is a decrease in the effect of the dimple of friction characteristic, with substantially little change to density. Conversely, as the load increases, the dimple pattern grows larger, resulting in a difference in the texture of these two components. At a dimple density of 10% the friction characteristic is easily demonstrated, with a consistent change in both speed and load.

혼합 및 유체윤활하에서 Micro-Scale Dimple Pattern의 마찰특성 (Friction Characteristics of Micro-scale Dimple Pattern under Mixed and Hydrodynamic Lubrication Condition)

  • 채영훈;김석삼
    • 한국정밀공학회지
    • /
    • 제22권2호
    • /
    • pp.188-193
    • /
    • 2005
  • Surface texturing of tribological application is another attractive technology of friction reducing. Also, reduction of friction is therefore considered to be a necessary requirement for improved efficiency of machine. In this paper attempts to investigate the effect of density for micro-scale dimple pattern on bearing steel flat mated with pin-on-disk. We demonstrated the lubrication mechanism for a Stribeck curve, which has a relationship between the friction coefficient and a dimensionless parameter for lubrication condition. It is found that friction coefficient is depended on the density of surface pattern. It was thus verified that micro-scale dimple could affect the friction reduction considerably under mixed and hydrodynamic lubrication conditions from based on friction map. Lubrication condition regime has an influence on the friction coefficient induced the density of micro dimple.