• Title/Summary/Keyword: 딤플

Search Result 134, Processing Time 0.029 seconds

Lubrication Characteristics of Laser Textured Parallel Thrust Bearing: Part 1 - Effect of Dimple Depth (Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제1보 - 딤플깊이의 영향)

  • Park, Tae-Jo;Hwang, Yun-Geon
    • Tribology and Lubricants
    • /
    • v.25 no.5
    • /
    • pp.305-310
    • /
    • 2009
  • Laser surface texturing (LST) methods are applied recently to generate micro-dimples in machine components having parallel sliding surfaces such as thrust bearings, mechanical face seals and piston rings, etc. And it is experimentally reported by several researchers that the micro-dimpled bearing surfaces can reduce friction force. Until now, however, theoretical results for various dimple parameters are not fully presented. In this paper, a commercial computational fluid dynamics (CFD) code, FLUENT is used to investigate the effect of dimple depth on the lubrication characteristics of parallel thrust bearing. The results show that the pressure, velocity and density distributions within dimples are highly affected by dimple depths and cavitation conditions. Adoption of micro-dimple on the bearing surface can reduce the friction force highly and its levels are affected by dimple depth. The numerical methods and results can be use in design of optimum dimple characteristics to improve thrust bearing performance.

NUMERICAL STUDY ON HYDRODYNAMIC LUBRICATION CHARACTERISTICS OF MICRO-DIMPLE TEXTURED SURFACES (미세 딤플 가공 표면의 수력학적 윤활특성에 대한 수치해석 연구)

  • Hong, S.H.;Lee, J.B.;Cho, M.H.;Lee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.363-367
    • /
    • 2009
  • Recently, the manufacturing of micro-cavity by means of laser surface texturing (LST) technique and low friction study by the LST have been in great progress. Most of current works have been dealing with the effect of cavity on friction and wear. The main objective of the present study was to investigate numerically two-dimensional lubrication characteristics of micro-dimple shapes fabricated on solid surfaces, and this study utilized the commercial CFD code (Fluent V.6.3). For the evaluation, preliminary simulation was conducted and numerical predictions were compared with the analytic solution obtained from the Reynolds's equation. Mainly, the present study investigated the influence of dimple depth, pattern shapes, and film thickness on lubrication characteristics related to the reduction of friction. It is found that the existence of micro-dimpled surface makes it possible to substantially reduce the friction forces exerted on the surfaces. In particular, substantial decrease in shear stresses was observed as the lubricant film thickness decreases. For instance, in the case of the film thickness of 0.01 mm, the estimated shear stress decreases up to about 40%. It indicates that the film thickness would be important factor in designing the micro-dimpled surfaces. Furthermore, it was observed that such a optimum dimple depth would be present because the dimple depth larger than the optimum value did no longer affect the reduction in shear stresses.

  • PDF

Calculation of a 2-D channel flow with a dimple (딤플이 존재하는 2차원 수로유동의 계산)

  • Choe, Seo-Won;Baek, Yeong-Ho;Kim, Du-Yeon;Gang, Ho-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.49-56
    • /
    • 1997
  • Heat-transfer enhancement is seeked through modifications of fin surface. Real life plate-fin heat exchangers have complex three-dimensional geometries. Fins can have arrays of dimples and are attached to rows of penetrating tubes. To isolate the effect of surface modification, we model the real flow by a two-dimensional channel flow with a dimple on one side. The flow is analysed by solving the incompressible Navier-Stokes equation by a finite volume method on a generalized boundary-fitted coordinate. Results show a trapped vortex inside the dimple for all cases computed. Local maximum of Nusselt number occurs near the downstream end of the dimple, due to such a vortex. Location of the vortex does not change with respect to the wall temperature change, but moved downstream when Reynolds number increases. This, together with the results that in all cases vortex core is somewhat downstream of the dimple center, suggests that the mean flow above continuously feeds the kinetic energy to the recirculating flow. Heat transfer enhancement and pressure losses are studied through analysing the relevant dimensionless parameters like, Nusselt number and friction factor. In all cases computed, dimpled channel flow experiences less pressure loss than two-dimensional Poiseuille flow.

Finite Element Analysis and Validation for Dimpled Tube Type Intercooler Using Homogenization Method (균질화 기법을 이용한 딤플 튜브형 인터쿨러의 유한요소해석 및 검증)

  • Lee, Hyun-Min;Heo, Seong-Chan;Song, Woo-Jin;Ku, Tae-Wan;Kang, Beom-Soo;Kim, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.153-161
    • /
    • 2009
  • Three-dimensional finite-element methods(FEM) have been used to analyze the thermal stress of an exhaust gas recirculation(EGR) cooler due to thermal and pressure load. Since efficiency and capability of the heat exchanger are mainly dependent on net heat transferring area of the EGR cooler system, the tube inside the system has a numerous dimples on the surface. Thus for finite element analysis, firstly the dimple-typed tube is modeled as a plain element without the dimple, and then the equivalent thermal conductivities and elastic modulus are calculated. This work describes the numerical homogenization procedure of the dimple-typed tube and verifies the equivalent material properties by comparison of a single unit and the actual full model. Finally, the homogenization scheme presented in this study can be efficiently applied to finite element analyses for the thermal stress and deformation behavior of the EGR cooler system with the dimple-typed tube.

Optimal Dimple Point of SFF HDD Suspension for Improving the Unloading Performance (언로드 성능 향상을 위한 딤플 포인트의 최적설계)

  • Kim, Ki-Hoon;Lee, Young-Hyun;Lee, Hyung-Jun;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.609-612
    • /
    • 2007
  • The HDD (hard disk drive) using Load/Unload (L/UL) technology includes the benefits which are increased areal density, reduced power consumption and improved shock resistance than those of contact-start-stop (CSS). Dynamic L/UL has been widely used in portable hard disk drive and will become the key technology for developing the small form factor hard disk drive. The main design objectives of the L/UL mechanisms are no slider-disk contact or no media damage even with contact during L/UL, and a smooth and short unloading process. In this paper, we focus on lift-off force, pitch static attitude (PSA), roll static attitude (RSA) and dimple point. The "lift-off" force, defined as the minimum air bearing force, is another very important indicator of unloading performance. A large amplitude of lift-off force increases the ramp force, the unloading time, the slider oscillation and contact-possibility. PSA and RSA are also very important parameters in L/UL system and stability of slider is mainly determined by PSA and RSA. Dimple point by PSA and RSA is also important indicator. Therefore we find the optimal dimple point of SFF HDD suspension for improving the unloading performance.

  • PDF

A Numerical Simulation of Flow and Heat Transfer in a Dimple-type Plate Heat Exchanger (딤플형 판형 열교환기의 유동 및 전열특성에 대한 수치해석)

  • Ahn, Hyuk-Jin;Lee, Sang-Hyuk;Hur, Nahm-Keon;Park, Hyoung-Joon;Ryu, Hea-Seong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.3
    • /
    • pp.149-155
    • /
    • 2010
  • In the present study, the characteristics on the internal flow and heat transfer of the dimple-type plate heat exchanger were numerically investigated. For the numerical analysis, the conjugate heat transfer analysis between hot fluid-separating plate-cold fluid was performed using the periodic boundary condition at the center area of the plate and appropriate inlet and outlet conditions for the two streams. The numerical results were validated by the comparison with the experimental data. From these results, the correlations of the Colburn j-factor for the heat transfer and the Fanning f-factor for the flow friction were obtained. The present results could be applicable for the optimal design of dimple-type plate heat exchanger.

Mechanism of Drag Reduction by Dimples and Roughness on a Sphere (구에 설치한 딤플과 표면 거칠기에 의한 항력 감소 메커니즘)

  • Choi, Jin;Jeon, Woo-Pyung;Choi, Hae-Cheon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.191-194
    • /
    • 2006
  • In this paper, we present a detailed mechanism of drag reduction by dimples and roughness on a sphere by measuring the streamwise velocity above the dimpled and roughened surfaces, respectively. Dimples cause local flow separation and trigger the shear layer instability along the separating shear layer, resulting in generation of large turbulence intensity. With this increased turbulence, the flow reattaches to the sphere surface with high momentum near the wall and overcomes strong adverse pressure gradient formed in the rear sphere surface. As a result, dimples delay main separation and reduce drag significantly. The present study suggests that generation of a separation bubble, i.e. a closed-loop streamline consisting of separation and reattachment, on a body surface is an important flow-control strategy for drag reduction on a bluff body such as the sphere and cylinder. In the case of roughened sphere, the boundary layer flow is directly triggered by roughness and changes to a turbulent flow. Due to this change, the drag significantly decreases. As the Reynolds number further increases, transition to turbulence occurs earlier on the sphere surface. Because of faster growth of turbulent boundary layer by roughness, earlier transition thickens the boundary layer, resulting in earlier separation and drag increase with increasing Reynolds number

  • PDF