• 제목/요약/키워드: 디프드로잉

검색결과 121건 처리시간 0.02초

유한요소해석을 이용한 세장비가 큰 직사각컵 다단계 디프 드로잉-아이어닝 공정의 최적 금형설계 (Optimum Tool Design in a Multi-stage Rectangular Cup Drawing and Ironing Process with the Large Aspect Ratio by the Finite Element Analysis)

  • 김세호;김승호;허훈
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.1077-1084
    • /
    • 2002
  • Optimum tool design is carried out fur a multi-stage rectangular cup deep-drawing and ironing process with the large aspect ratio. Finite element simulation is carried out to investigate deformation mechanisms with the initial design made by an expert. The analysis considers the deep drawing process with ironing for the thickness control in the cup wall. The analysis reveals that the difference of the drawing ratio within the cross section and the irregular contact condition produce non-uniform metal flow to cause wrinkling and severe extension. For remedy, the modification guideline is proposed in the design of the tool and the process. Analysis results confirm that the modified tool design not only improves the quality of a deep-drawn product but also reduces the possibility of failure. The numerical result shows fair coincidence with the experimental one. After tryouts of the tool shape, the rectangular cup has been produced in the transfer press.

강소성 유한요소법을 이용한 평면 이방성 재료의 디프 드로잉 해석 (Analysis of Deep Drawing of Planar Anisotropic Materials Using the Rigid- Plastic Finite Element Method)

  • 김형종;김동원
    • 대한기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.248-258
    • /
    • 1992
  • Three-dimensional rigid-plastic finite element formulation based on the membrane theory was described and a computer program for large deformation analysis was developed. In the formulation, normal and planar anisotropy of sheet material and rotation of the principal axes of anisotropy was taken into consideration. Sheet metal was assumed to be rigid-plastic material obeying Hill's quadratic yield criterion and its associated flow rule. Deep drawing process, as a preliminary test, for normal anisotropic material was analyzed in order to examine the validity of developed finite element program. The results were consistent with the existing finite element solutions or experimental data. The present study was mainly concerned with the influence of planar anisotropy on deformation behaviour. Finite element analysis and experiment were carried out for the whole process of deep drawing of planar anisotropic material. The computational and experimental results on the shape of ear, strain distribution and punch load were in good agreement.

국소 가열 방법을 이용한 2단계 축대칭 디프 드로잉 공정의 해석 및 설계 (Finite Element Analysis Design of Axisymmetric Deep Drawing Process by Local Heating)

  • 이동우;송인섭;양동열
    • 한국정밀공학회지
    • /
    • 제10권3호
    • /
    • pp.198-204
    • /
    • 1993
  • The study is concerned with finite element analysis and design of axisymmetric deep drawing by local heating. When the bottom shape of a cup is not flat but in complex-shaped, i.e., hemispherical, the cup cannot be drawn in one or two processes in the conventional deep drawing process and the limit drawing ratio is limited as well. By introducing local heating selectively with regards to the heating position, the formability of the sheet metal can be greatly increased with the reduced number of processes. In the Process analysisthe rigid- viscoplastic finite element method is employed and the temperature effect is incorporated. Bishop's step-wise decoupled method is employed to analyze the thermomechanical interaction between deformation and heat transfer. Axisymmetric deep drawing of a hemisphere-bottomed cup has been analyzed for various combinations of heat application in the punch and the die. At the first stage of deep drawing stretch forming is practically carried out by firmly pressing the blankholder with the punch and the die heated at various levels of temperature. Then at the second stage the same cup is drawn for the saame or different combination of temperature. From the computation, it has thus been shown that the fromability of a cup is greatly increased in two-stage deep drawing with increased limet drawing ratio.

  • PDF

자동차 엔진풀리 성형 공정 설계에 관한 연구 (A Study on the Forming Process Design of Engine Pulleys for Automobiles)

  • 신보성;최두선;송선호;백재현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.630-634
    • /
    • 1997
  • In this paper,we will discuss in the forming process design of the making engine pulleys for automobiles. These pulleys are required to be made by precision deep drawing process because these are to be combined with bearings and engine timing belts. These pulleys are used of cold rolled steel plates starting with the initial blanking size of 115.2mm and the initial thickness of 1.2mm. Our deep drawing process is designed the continuous 5-steps process, that is, 1'st deep drawing, 2'nd reverse redrawing, 3'rd trimming, 4'th drawing-ironing and 5'yh piercing. This process need no in-process annealing.

  • PDF

다단 벽두께 원통 쉘 성형 공정 설계에 관한 연구 (A Study on the Forming Process Design of Cylindrical Multithickness Shell)

  • 신보성;최두선;김동진;김병민;한규택;신영우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.943-948
    • /
    • 1996
  • In this paper. we will discuss in making large size cylindrical shells with multithickness wall sections such as straight, stepped, tapered sides. These shells are constructed of type 6061 O temper aluminum starting with a blanking size of 877 mm plate. Its diameter to length ratio of 1 to 2.78 and a 36.7% wall reduction is achieved by our continuous deep drawing process. This process required no in-process annealing. But after cold working, these shells is performed heat treatment to T6 condition. These shells are used for the making of seamless LPG pressure vessels after the spinning process. This process is composed of deep drawing, reverse redrawing, drawing-ironing and several ironing processes. In the verification of forming process design, we used DEFORM code.

  • PDF

DP강의 디프드로잉 시 집합조직 발달 시뮬레이션 (Simulation of Texture Evolution in DP steels during Deep Drawing Process)

  • 송영식;한성호;진광근;최시훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.130-133
    • /
    • 2008
  • The formability of DP steels can be affected by not only initial texture but also deformation texture evolved during plastic deformation. To investigate the evolution of deformation texture during deep drawing, deep drawing process for DP steels was carried out experimentally. A rate sensitive polycrystal model was used to predict texture evolution during deep drawing process. In order to evaluate the strain path during deep drawing, a steady state was assumed in the flange part of deep drawn cup. A rate sensitive polycrystal model successfully predicted the texture development in DP steels during deep drawing process. It was found that the final stable orientations were strongly dependent on the initial location in the blank.

  • PDF

연성파괴에 기반한 다단 디프드로잉 및 아이어닝 공정에 의한 알루미늄 라이너 개발 (Development of an Aluminum Liner using Multi-drawing and Ironing Processes based on the Ductile Fracture Criterion)

  • 윤여웅;강성훈;윤춘기;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.403-407
    • /
    • 2009
  • In this work, finite element investigations were carried out to manufacture a seamless aluminum liner without crack generation using four-stage deep drawing followed by two-stage ironing process. In order to predict the crack generation during the liner manufacturing process, the Normalize Cockroft-Latham(NCL) which is one of ductile fracture criteria was adopted. In addition, the tensile tests were carried out to obtain the critical value of NCL by comparing the experimental and FE simulation results. From this, various case studies based on FE simulation were carried to obtain the optimum die designs which can prevent the crack generation during ironing processes. Finally, the aluminum liner was successfully made using obtained die designs so that requirements were met in terms of thickness and height of the liner.

  • PDF

타원형 다단계 디프드로잉 용기의 최적 예비형성 설계에 관한 연구 (A Study on the Optimum Pre-form Design for Multistage Deep Drawing of Oval Shells)

  • 김두환
    • 소성∙가공
    • /
    • 제8권4호
    • /
    • pp.356-363
    • /
    • 1999
  • This paper discusses some techniques for the determination of optimum blank size and pre-form design for multi-stepped deep drawing of oval shell. The deep drawing process of oval shape has been regarded as more difficult than that of cylindrical shell because of its complicated behavior of plastic deformation. But there is insufficient information in this area to carry out successful deep drawing work of irregular products such as oval, rectangular, and square shapes. In order to find the optimum conditions, the drawing apparatus for two kinds of pre-form design are built, a series of drawing experiments performed, and thickness stain distributions measured. From the results of thess suggested experiments, various optimum process variables are observed and discussed.

  • PDF

차체판넬 프레스 성형공정의 평면변형해석 (Plane-Strain Analysis of the Stamping Process of Auto-Body Panel)

  • 전기찬;이항수;유동진;이정우;김충환
    • 대한기계학회논문집
    • /
    • 제16권10호
    • /
    • pp.1853-1860
    • /
    • 1992
  • 본 연구에서는 평면변형을 가정할 수 있는 부품을 대상으로 하여 성형에너지 최소화 기법을 사용하여 계산속도가 빠르고, 설계된 금형의 CAD 데이터로부터 직접 변 형해석이 가능하며 금형 설계자들이 용이하게 사용할 수 있는 2차원적인 해석을 연구 하였다.

세장비가 큰 다단계 초정밀 사각형 디프드로잉을 위한 블랭크 설계 (Blank Design in Multi-Stage Rectangular Deep Drawing of Extreme Aspect Ratio)

  • 박철성;구태완;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.258-261
    • /
    • 2003
  • In this study, finite element analysis for multi-stage deep drawing process of rectangular configuration with extreme aspect ratio is carried out especially for the blank design. The analysis of rectangular deep drawing process with extreme aspect ratio is likewise very difficult with respect to the design process parameters including the intermediate die profile. In order to solve the difficulties, numerical approach using finite element method is performed in the present analysis and design. A series of experiments for multi-stage rectangular deep drawing process are conducted and the deformed configuration is investigated by comparing with the results of the finite element analysis. Additionally, to minimize amount of removal material after trimming process, finite element simulation is applied for the blank modification. The analysis incorporates brick elements for a rigid-plastic finite element method with an explicit time integration scheme using LS-DYNA3D.

  • PDF