• Title/Summary/Keyword: 디퓨저 유동

Search Result 86, Processing Time 0.051 seconds

The evaluation of performance and flow characteristics due to the length of throat and diffuser for ship's ejector (선박용 Ejector의 직관부와 디퓨저 길이 변화에 따른 성능비교 및 유동특성에 관한 연구)

  • Lee, Young-Ho;Kim, Mun-Oh;Kim, Chang-Goo;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.31-38
    • /
    • 2014
  • Ejector is a simple device which can transport a low-pressure secondary flow by using a high-pressure primary flow. The efficiency of the ejector system is relatively very low, compared to other fluid transport devices driven mainly by the forces acting on the normal direction. However, its major advantage is a simple structure with no moving parts, and it transports a large amount of fluid with a small driving energy. In this study, the performance of side-type liquid ejector commonly used in ships; is analyzed by using experimental and CFD methods under steady and incompressible flow condition by varying the length of the throat and diffuser, the flow pattern and suction phenomenon were studied in detail.

Flow Visualization and Calculation at the Outlet of Propellant Tank Pressurizing Gas Injector (추진제탱크 가압용 인젝터 출구에서의 유동가시화 및 해석)

  • Kwon, Oh-Sung;Han, Sang-Yeop;Kwon, Ki-Jung;Chung, Yong-Cahp
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.73-79
    • /
    • 2010
  • Propellant tank pressurizing gas injector is used in the pressurization system of liquid propellant rocket to reduce incoming gas velocity and distribute the gas in the tank. Temperature distribution in the propellant tank ullage is varied according to the gas injector shape, and it has influence on the required pressurant gas and thermal phenomena in the tank. In this paper, diffuser type gas injector was studied to make the ullage have stratified temperature distribution. Injected gas flow at the outlet of prototype diffuser was visulized using particle image velocimetry method and it was compared with the results of calculation. Calculation was well agreed with measurement and was used as an inlet condition of propellant tank ullage calculation.

An Analysis of the Thermal Flow Characteristics in Engine-Room and VTRU in accordance with Application of Thermoelectric Device Cooling System to Prevent Overheating of the Korean Navy Ship VRTU (해군 함정 VRTU의 과열방지를 위한 열전소자 냉각장치의 적용에 따른 기관실 및 VRTU 내부 열 유동특성 분석)

  • Jung, Young In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.610-616
    • /
    • 2020
  • This study conducted joint research with the Navy logistics command ship technology research institute to resolve the occurrence of naval vessel's high-temperature warning and equipment shutdown caused by VRTU overheating during summer operation and the dispatch of troops to equatorial regions. The cooling effect was checked according to the installation of a thermoelectric device cooling system, and heat flow and heat transfer characteristics inside VRTU was analyzed using Computational Fluid Dynamics. In addition, the temperature distribution inside the engine room was assessed through interpretation, and the optimal installation location to prevent VRTU overheating was identified. As a result, the average volume temperature inside the VRTU decreased by approximately 10 ℃ with the installation of the cooling system, and the fan installed in the cooling system made the heat circulation smooth, enhancing the cooling effect. The inside of the engine room showed a high-temperature distribution at the top of the engine room, and the end of the HVAC duct diffuser showed the lowest temperature distribution.

A Starting Characteristics Study of the Scramjet Engine Test Facility with a Mach 5.0 Nozzle (마하 5.0 노즐을 장착한 스크램제트 엔진 시험설비의 시동 특성 연구)

  • Lee, Yang-Ji;Yang, In-Young;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.63-72
    • /
    • 2013
  • A Mach 5 nozzle and a diffuser of the Scramjet Engine Test Facility (SETF) were made for a hydrocarbon-fueled scramjet engine. SETF, attached with a diffuser guide, started with a model of 60% blockage, though the model engine could not start by over expansion of the facility nozzle. The model was moved into the nozzle to escape the shock generated from the nozzle exit, both SETF and the engine could start. The pitot rake experiments (blockage of 2.3%) were done for measuring the core flow in the test section. From the pitot experiments, the core flow was expanded by an under expansion. It means that the core flow in the test section was related with a model blockage. SETF and the engine with a blockage of 33% work normally. From a series of experiments, SETF started with a normal shock efficiency of 58%, regardless of a blockage ratio.

Flow Distribution in an Electrostatic Precipitator with a Perforated Plate (타공판에 따른 전기집진기 내의 유동분포)

  • Kim, Dong-uk;Jung, Sang-Hyun;Shim, Sung-Hoon;Kim, Jin Tae;Lee, Sang-Sup
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.147-152
    • /
    • 2019
  • Electrostatic precipitator that shows a good performance for the removal of particulate matter is important for controlling emissions from industrial facilities and power plants. The efficiency of the electrostatic precipitator on the removal of particulate matter is highly affected by the flow pattern inside the electrostatic precipitator. A number of studies have been conducted to obtain uniform flow distribution inside electrostatic precipitators. An electrostatic precipitator (ESP) with a length of 3.5 m and a height of 0.875 m was designed and installed in this study. The ESP included an inlet duct, diffuser, body, and contractor. Three perforated plates were installed in the diffuser of the ESP. Five pitot tubes were installed vertically and used to measure flow distribution in the cross section of the ESP body. Root mean square deviation value (RMS%) was used to examine the flow distribution inside the ESP when the perforated plates were installed in the diffuser. Flow distribution was also investigated in relation to the porosity of the perforated plate. The results showed that the perforated plates improved greatly the flow distribution inside the electrostatic precipitator. In addition, the most uniform flow distribution was found with 40%, 50%, and 50% porous perforated plates located from the inlet of the diffuser.

Flow Characteristics of Central-Driven Ejector with Design Parameters (중앙구동 이젝터의 설계변수에 따른 유동특성)

  • Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.645-651
    • /
    • 2015
  • The objective of this study is to experimentally investigate the effect of design parameter on the mass ratio of a central-driven ejector. The design parameters are the primary nozzle area and distance ratios, diffuser exit-area ratio and mixing-tube length ratio. The experimental setup was an open-loop continuous circulation system which has a movable nozzle ejector, an electric motor-pump, a water tank, a control panel and high-speed camera unit. We calculated the mass ratio using the measured primary and suction-flow rates with the experimental parameter of primary water-flow rate or pressure. The results showed that the mass ratio increased with the primary nozzle distance ratio and mixing tube length ratio, while the mass ratio decreased with the primary nozzle-area ratio and diffuser exit-area ratio.

Steady Simulations of Impeller-Diffuser Flow Fields in Turbocompressor Applications (터보 압축기 임펠러-디퓨저 운동장에 대한 정상상태 해석)

  • Nam, S.S.;Park, I.Y.;Lee, S.R.;Ju, B.S.;Hwang, Y.S.;In, B.S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.405-412
    • /
    • 2005
  • Numerical and experimental investigations were conducted to assess the aerodynamic performance of several centrifugal compressors. In order to impose an appropriate physics at the interface between impeller and vaned diffuser numerically, two different techniques, frozen rotor and stage models, were applied and the simulation results were compared with the corresponding prototype test data. An equivalent sand-grain roughness height was utilized in the present computational study to consider a relative surface roughness effect on the stage performance simulated. From a series of investigations, it was found that the stage model is more suitable than the frozen rotor scheme for the steady interactions between impeller and diffuser in turbocompressor applications. It is supposed that the solution by frozen rotor scheme is inclined to overrate the non-uniformity of the flow fields. The predicted aerodynamic performance accounting for surface roughness effect shows favorable agreement with experimental data. Simulations based on the aerodynamically smooth surface assumption tend to overestimate the stage performance.

  • PDF

Periscope Imaging System Design and Analysis for Flame Front Visualization (화염 정면 가시화를 위한 페리스코프 영상 시스템 설계 및 해석)

  • Shin, Jaeik
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.16-23
    • /
    • 2019
  • This paper describes the design and analysis of a periscope imaging system installed at the engine test facility in the Agency for Defense Development. The periscope system is a cylinder-shaped image observation system installed at the rear of the engine and at the top of the diffuser. The periscope system has high risk of breaking because it is directly affected by high temperature (2300 K) and products of combustion. Thus, we used 1D heat transfer calculation, and 2D and 3D CFD analysis to confirm the heat flux and temperature distribution. Also, the cooling performance was verified. In the current design, using the periscope system, we can see flame shapes, control of the nozzle, and stability of the exhaust flow visually.

Prediction of Hydraulic Performance of a Scaled-Down Model of SMART Reactor Coolant Pump (스마트 원자로냉각재펌프의 축소모형에 대한 수력성능 예측)

  • Kwon, Sun-Guk;Park, Jin-Seok;Yu, Je-Yong;Lee, Won-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1059-1065
    • /
    • 2010
  • An analysis was conducted to predict the hydraulic performance of a reactor coolant pump (RCP) of SMART at the off-design as well as design points. In order to reduce the analysis time efficiently, a single passage containing an impeller and a diffuser was considered as the computational domain. A stage scheme was used to perform a circumferential averaging of the flux on the impeller-diffuser interface. The pressure difference between the inlet and outlet of the pump was determined and was used to compute the head, efficiency, and break horse power (BHP) of a scaled-down model under conditions of steady-state incompressible flow. The predicted curves of the hydraulic performance of an RCP were similar to the typical characteristic curves of a conventional mixed-flow pump. The complex internal fluid flow of a pump, including the internal recirculation loss due to reverse flow, was observed at a low flow rate.